
Serverless Solutions

Serverless Architecture
Whitepaper
Explore the benefits and challenges of cloud compu-
ting, the use of container platforms, and various tools
and services for deploying applications in the cloud.

@ServerlessCon # SLA_con serverless-architecture.io ©
 M

r.
T

ha
na

ko
rn

 K
o

tp
o

o
to

rn
/S

hu
tt

er
st

o
ck

.c
o

m

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper2.2
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

2serverless-architecture.io @ServerlessCon # SLA_con

Contents

Serverless Architecture & Design

Architectures for Cloud Solutions 3
An overview of software architectures and design patterns for cloud solutions
by Florian Lenz

ECS Anywhere: Fast Way to Hybrid Operations 7
In Uncharted Territory: SaaS Operations at the Customer – Part 1
by Markus Kokott

Kubernetes for In-house Operations 16
In Uncharted Territory: SaaS Operations at the Customer – Part 2
by Markus Kokott

Serverless Development

Your First Step Towards Serverless Application Development 25
The journey towards mastering Serverless applications
by Kamesh Sampath

4 Tips for Solving Lambda Performance Issues 29
Challenges and solutions
by Gilad David Maayan

Serverless Operations & Security

In the Engine Room 31
Application Management with AWS Proton – Part 1
by Sascha Möllering

AWS Proton – Technical Details 35
Application Management with AWS Proton – Part 2
by Sascha Möllering

Cloud-native Development

Dev(Ops) Experience Cloud-Native 40
Detours to happiness
by Michael Hofmann

API Design

API Contract Definitions 46
Different ways of specifying contracts
by Lena Fuhrimann

https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

3

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

by Florian Lenz

The cloud is changing the way software solutions are
developed, designed, and operated. The focus is on the
development of small and independent services. Com-
munication between the services takes place via defined
interfaces. These can be both synchronous (e.g. request/
response) and asynchronous (e.g. events or commands).
Depending on the workload, they can be scaled individu-
ally. For cloud applications to function properly despite
distributed states, stability and resilience should be con-
sidered during planning. Additionally, monitoring telem-
etry data is important in order to gain insight into the
system in case anomalies occur in the application process.

First considerations
Before you can begin developing cloud solutions, you
should discuss and design the basic architecture of the
application. In the following sections, we will look at
the most popular architectural styles and explain their
advantages and disadvantages.

N-tier architecture
Perhaps the best-known style is N-tier architecture.
When developing monolithic applications, this principle
is used in most cases. When designing the solution, logi-
cal functions are divided into layers, as seen in figure 1.
The conventional layers (presentation layer/UI, business
layer, data layer) build on each other, which means that
communication only takes place from a higher-level lay-
er to a lower-level layer. For example, the business layer
does not know any details of the UI. Communication
between these layers always starts from the UI.

In the context of cloud development, layers can be
hosted on their own instances and communicate with
each other via interfaces. As a rule, N-tier architectures
are used when the application is implemented as an
Infrastructure-as-a-Service (IaaS) solution. In this case,
each layer is hosted on its own virtual machine. In the
cloud, it makes sense to use additional managed servic-
es, such as a content delivery network, load balancer,
caching, or design patterns like the Circuit Breaker.

The N-tier architecture’s strengths lie in its ease of ex-
ecution on local systems and in the cloud. It also lends
itself to the development of simple web applications.
As soon as the business functions of an application be-
come more complex or the scaling of individual business
functions is in the foreground, architectures are offered.
In contrast, these are not monolithic. With these prin-

Fig. 1: Sketch of a 3-tier architecture

An overview of software architectures and design patterns for cloud
solutions

Architectures for
Cloud Solutions
Cloud applications have been the talk of the town for several years now. Es-
pecially when it comes to cost reduction and more efficient use of available
resources, the cloud is hard to beat. Its true potential only becomes appar-
ent when cloud-optimized architectures and design patterns are used. This
enables stable software to be developed and complex requirements to be
broken down into small, manageable solutions. But this advantage comes
at a price. Questions start to arise like: "How can services communicate with
each other when systems fail?" and "How do I deal with peak loads?"

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

4

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

ciples, individual business requirements can be hosted
and scaled separately.

Microservices architecture
As already touched upon, this method is useful when the
complexity of an application increases because individual
domains (business functions) can be developed separate-
ly [2]. Each microservice can be created individually and
only needs to implement coordinated interfaces (fig. 2).
For example, Microservice 1 can be developed with
.NET and Microservice 2 with Node.js. The technologies
used should be selected in order to easily meet business
requirements. Scaling can be performed individually for
each microservice since the microservices are loosely cou-
pled. Therefore, the process does not have to be applied
to the entire application if only individual domains have
high traffic. Significantly smaller code bases are easier to
check automatically with unit tests and can be refactored
more easily afterward, increasing code quality.

The biggest disadvantage of a microservices architecture
is ensuring communication between individual services.

Event-driven architecture/serverless
computing
An event-driven architecture uses events to communicate
between decoupled services. These procedures have three

key components regarding events:
Producers, Routers, and Consum-
ers. A producer publishes events to
the router, which filters and forwards
them to consumers. Producer and con-
sumer services are decoupled, allow-
ing them to scale, update, and deploy
independently. This principle can also
be integrated into a microservices ar-
chitecture or a monolith, making the
architectural models complementary.

An event-driven architecture can
be built on a pub/sub model or an
event notification model. The for-
mer is a messaging infrastructure
where event streams are subscribed
to. When an event occurs or is pub-
lished, it is sent to the respective sub-
scribers/consumers (fig. 3).

In the event notification model,
events are written to a queue, pro-
cessed by the first event handler, and
removed from the queue. This be-
havior is beneficial when events may
only be processed once. If an error
occurs during processing, then the
event is written back to the queue. In
the simplest variant, an event triggers
an action directly in the consumer.
This can be an Azure Function that
implements a queue trigger, for ex-
ample. One advantage of using this

microservice and the related Azure Storage Queue is that
both services are serverless.This means that these services
only run when they are needed. It’s more cost-effective
than being continuously available, which can incur high
costs. Serverless is also a good choice when you require
rapid provisioning and the application scales automati-
cally depending on the workload. Since serverless ser-
vices are provided by the cloud operator, one drawback
is a strong commitment to the operator.

Design principles
The following sections explain design principles that
help optimize applications in terms of scalability, resil-
ience, and maintainability. Particular attention is paid to
cloud application development.

Self-healing applications
In distributed systems, hardware can occasionally fail,
network errors can occur, or remote systems can be-
come unavailable. In these cases, it is useful if applica-
tions know what to do and remain operable for the user.
When a remote system is not available, it isn’t clear at
first whether it’s a short-term or longer-term failure. In
this case, the circuit breaker pattern provides a remedy.
Depending on the configuration, this pattern is used to-
gether with the Retry pattern. Most of the time, these

Fig. 2: Sketch of a microservices architecture

Fig. 3: Sketch of an event-driven architecture (pub/sub model)

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://Node.js

5

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

are only minor faults that only last for a short time. In
these cases, it is sufficient for the application to repeat
the failed call after a certain period of time with the help
of the retry pattern. Then, if an error occurs again and
the remote system fails for a longer period, the circuit
breaker pattern is used. Figure 4 shows the structure of
this pattern. A circuit breaker acts as a proxy for opera-
tions that may experience errors. The proxy will moni-
tor the number of recent errors and decide whether to
continue the operation or immediately return an excep-
tion. When closed, requests are forwarded to the remote
system. If an error occurs during this process, then the
error counter’s number goes up. Once the error thresh-
old is exceeded, the proxy is set to the "open" state.

In this state, requests are answered directly with an
error and an exception is returned. Once a timeout has
expired, the proxy is in the "half-open" state. A limited
number of requests are allowed. If these are success-
ful, the proxy transitions to the closed state and allows
requests again. However, if another failure occurs, it
switches back to "open". The semi-open state prevents

sensitive systems from being flooded with requests after
they become available again.

.NET developers are recommended to take a closer
look at Polly [1]. This is a .NET resilience and transient
fault handling library that allows developers to express
policies such as retry, circuit breaker, timeout, bulk-
head, isolation, and fallback in a thread-safe manner.

Minimize coordination
For applications to scale, individual services of an ap-
plication (frontend, backend, database, or similar) must
be executed on their own instances. It becomes an issue
when two instances want to execute an operation simul-
taneously that affects a common state. One of the two in-
stances is locked until the other instance is finished with
the operation. The more instances are available, the bigger
communication issues become. As a result, the advantage
of scaling becomes smaller and smaller. Event sourcing
is an architectural pattern that locks operations only for
a short time. Here, all changes are mapped and recorded
as a series of events. Unlike in classic relational databases,

the current state of the application
is not stored, but instead the indi-
vidual changes that led to the cur-
rent state over time. The decisive
factor is that only new entries may
be added. These events are stored in
the Event Store. Above all, it must
support fast insertion of events and
serves as a single source of truth.

Another architecture pattern is
CQRS (Command Query Respon-
sibility Segregation). Here, the
application is separated into two
parts: a read service and a write
service. The advantages are the dif-
ferent scalability and adaptability
to business requirements. CQRS
excels when combined with event
sourcing. For example, you can use
event sourcing in the write service
and implement an optimized query
for event sourcing entries in the
read service. Figure 5 shows that in
a simple case, a command is added

Fig. 4: Circuit
breaker pattern

Fig. 5: CQRS and Event-Sourcing-Pattern

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

6

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

to a queue and processed as soon as a command handler
is available. Events in the event store are transferred to
the databases according to their changes. Systems de-
veloped with this model do not offer any consistency
guarantees (eventual consistency) in the standard. For
performance reasons, in the eventual consistency model,
data is not immediately distributed to all servers or par-
titions during write operations. Instead, algorithms are
used to ensure that the data is consistent after the write
operations have been completed. As a rule, no statements
are made about the operation’s time period.

Alignment with business requirements
The design patterns you use must support business re-
quirements. It is important to know whether a thou-
sand or millions of users a day will use the application.
Likewise, you must know how fail-safe the application
must be. The first step should be defining the non-func-
tional requirements. Design patterns can be analyzed and
checked for non-functional requirements. If the software
is complex, Domain-Driven Design (DDD) can be an op-
tion for software modeling. In short, DDD focuses on the
domain-oriented nature of the software and the business
logic, which is the basis for both the architecture and the
implementation. This is a logical step, considering that
software supports business processes. The microservices’
architecture is often used in conjunction with domain-
driven design, where each functionality (bounded con-
text) is mapped as a microservice. As per the principle
"Do one thing and do it well", each bounded context has
exactly one functional task. From a technical point of
view, one service is implemented for each bounded con-
text, which is responsible for data management, business
logic, and the user interface. Additionally, Onion Archi-
tecture has become established in DDD. Figure 6 shows
the structure of this principle. In contrast to other archi-
tectures, the Onion Principle places professionalism at the

center. Only the outer layers may access the inner layers.
As a result, domain-oriented code is separated from ap-
plication code. Long-lasting business logic remains un-
touched when changes are necessary at the infrastructure
level. By separating infrastructure aspects and business
logic in the Onion Architecture, the domain model is
largely free of the technical aspects mentioned above. In
addition to the simpler testability of business logic, this
allows for more readable business code.

Conclusion
In order to exploit the full potential of the cloud, all non-
functional requirements should be defined before an ap-
plication is developed. This prior knowledge will help
you find the right design patterns, basic architectures,
and combine them. Especially in the case of distributed
systems, software developers, software architects, and
domain experts should give more thought to behaviour
in the event of an error.

Florian Lenz is a freelance software developer and architect
focusing on cloud solutions, software architecture, web,
and cross-platform development. His focus is on the deve-
lopment of cloud and software solutions with C# and Azu-
re, Docker and .NET.

Links & References

[1] http://www.thepollyproject.org

[2] https://medium.com/brickmakers/cloud-architekturen-
im-%C3%BCberblick-d7b6a366fc5dvvv

Fig. 6: Onion Architecture

A Serverless User Journey
on LEGO.com
Luke Hedger, Sarah Hamilton | The LEGO Group

Purchasing the latest LEGO
set on LEGO.com takes you
on an exciting unseen
Serverless journey. Behind

the scenes, we’re leveraging the latest Serverless
tech to ensure our system is scalable, fault-toler-
ant & cost-efficient while delivering value for our
customers. With an ever-evolving codebase to
manage, we’ll demonstrate how we encourage
fast development by decoupling our backend
systems using events. We’ll also deep dive into
some of our services, allowing a customer to fulfil
a user journey and enjoy their dream LEGO set.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://LEGO.com
http://www.thepollyproject.org
https://medium.com/brickmakers/cloud-architekturen-im-%C3%BCberblick-d7b6a366fc5dvvv
https://medium.com/brickmakers/cloud-architekturen-im-%C3%BCberblick-d7b6a366fc5dvvv
https://serverless-architecture.io/serverless-architecture-design/serverless-user-journey/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://LEGO.com
http://LEGO.com

7

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

By Markus Kokott

Bloomberg [1] estimates that the SaaS market will grow
to over $600 billion by 2023, quadrupling its 2020 lev-
els. This is an incentive for many software vendors to
create SaaS offerings in the Cloud for products previ-
ously operated by customers in-house. The vendor need
to address a very specific problem additionally to techni-
cal modernization and building operational expertise on
this journey: how to deal with loyal customers who can-
not shift operations of the product to the cloud? There
can be various reasons for this:

• The product is used in business areas subject to strict
regulations, forcing the customer to operate in-house.

• The customer has invested heavily in on-premises
infrastructure and is waiting for payback before mov-
ing to SaaS.

• The product must be co-located with other systems of
the customer because of low-latency requirements in
the integration.

• The product handles large amounts of data that the
customer has not yet migrated to the cloud.

• The software vendor has several options to deal with
this problem:

• The existing product is further developed in parallel
with the SaaS offering. Both variants will be adver-
tised as one product. The added value of the SaaS
solution from a customer’s perspective is merely the
outsourcing of operations.

• The existing product enters a sunset phase. This
means active development is discontinued, and the
product only receives security updates and support
for a fixed length of time. The SaaS offering can be
created from scratch.

• The SaaS offering becomes the software vendor’s
strategic focus and is expected to be responsible for
the main revenue in the future. The existing product
becomes the SaaS offering’s core. Technical archi-
tecture and deployment model are chosen to enable
operations of the core product outside the Cloud.

In the first case, the software vendor needs to either in-
crease its development efforts to support two deploy-
ment models or sell a managed hosting offer as SaaS.
Advantages of modern microservices architectures, such
as shorter release cycles and more efficient operations,
are often lost in this case. Functional parity between li-
censed product and SaaS offering is hard to maintain
long term. For example, cloud providers offer services
in the area of artificial intelligence and machine learning
(AI/ML) that can only be implemented with considera-
ble effort by software vendors themselves. Such services
often cannot be operated cost-effectively in single-ten-
ant environments. Software vendors are free to integrate
Cloud-based services in the SaaS variant to implement
innovative use cases.

If software vendors opt for the second option, they
have the most flexibility regarding architecture and
functional design of the software. However, they risk

In Uncharted Territory: SaaS Operations at the Customer – Part 1

ECS Anywhere:
Fast Way to Hybrid
Operations
Established software vendors increasingly want to offer their product portfolio
as a software-as-a-service (SaaS) solution. However, parallel development for on-
premises and cloud deployments poses challenges. This article shows how vendors
can standardize environments using container platforms in order to reduce costs
for delivery and operations of SaaS in hybrid scenarios.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

8

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

losing loyal customers and may suffer major revenue
losses as a result. It is important to clarify with custom-
ers in advance whether a switch to a SaaS offering is
realistic and to plan the transition period generously.

The third option therefore offers a tradeoff: self-
hosting customers are given the option of continued
operations on their own responsibility and under full
control. At the same time, software vendors need not
consider two technical architectures in development.
For new use cases, they can decide on a case-by-case
basis whether the functionality should (or can) be im-
plemented in the core product. If the use case is devel-
oped only for the SaaS variant, software vendors have
absolute liberty with regard to architecture and design.
Software vendors need to find suitable models for de-
ployment and operations if they want to offer the core
product outside the Cloud additionally to the SaaS of-
fering. It needs to enable effective operations of a grow-
ing number of customers in the responsibility of the
vendor as well as deployments on heterogeneous infra-
structure in individual clients’ data centers by their own
IT. Modernizations often additionally aim for improv-
ing development by enabling shorter release cycles of
smaller change sets, product planing driven by insights
from end-user-feedback, and automated provisioning of
test and demo environments.

Containerized solutions are often chosen because
they move many operational tasks related to provi-
sioning and deployment to the build phase of develop-
ment. They support microservices architectures and are
therefore well suited for agile development. In addition,
operations teams today often already have experience
running container platforms. In particular, the open
source system Kubernetes is widely adopted and can be
deployed to a huge variety of hardware.

So does Kubernetes already solve the portability
problem? Do software vendors only need to make their
architecture compatible with Kubernetes in order to en-
able SaaS? Unfortunately, the answer to this question
is “no.” The reason is the high degree of flexibility and
rapid evolution of the Kubernetes project. APIs used to-
day to describe a workload may already be gone with
the next release. Moreover, administrators of a Kuber-
netes platform can add extensions or even replace plat-
form standards. It is also not guaranteed that customers’
own operations teams are comfortable with and/or ex-
perienced enough to deploy and operate clusters for
mission-critical applications despite the wide adoption
of Kubernetes.

This two-part article discusses two platforms for run-
ning a public SaaS offering in the Cloud that also ena-
bles software vendors to support deployments of their
products to customer-provided infrastructure:

Amazon Elastic Container Service (ECS) is a container
platform developed by Amazon Web Services (AWS).
It was designed with the goal of simplifying processes
in the development, deployment and operations of con-
tainerized applications. As a result, ECS is particularly

useful when software vendors want to minimize their op-
erational overhead or have little experience with cloud-
native developed applications or container platforms.

With Amazon Elastic Kubernetes Service (EKS), AWS
offers a managed service for running Kubernetes appli-
cations. EKS is certified by the Cloud Native Compute
Foundation (CNCF) and guarantees compatibility with
the open source version of Kubernetes. EKS users have
the flexibility that they are used to from Kubernetes to
customize the cluster to their own needs.

With Amazon ECS Anywhere and Amazon EKS Any-
where, software vendors can run containerized solutions
for ECS and EKS outside of the AWS Cloud and run some
or all of their SaaS offering on customer hardware. We
show how this can help software vendors deliver solu-
tions for customers with requirements to operate the
product on-premises. In both articles of this series, we
limit discussion to the features of the Anywhere compo-
nents. For details on ECS and EKS themselves, we refer
the interested reader to the official documentation [2], [3].

In the remainder of this article, we will look at the ar-
chitecture of ECS Anywhere in detail. We will also show
approaches to deployment and operations of SaaS on
customer-provided infrastructure. The follow-up article
will cover EKS Anywhere.

Extend the cloud with your own hardware
Amazon ECS was initially released as container orches-
tration platform for AWS customers in 2014. The in-
terface used to describe workloads is based on Docker
Compose. In a collaboration between Docker and AWS,
native ECS support is even integrated into the Docker
Compose CLI [4].

Like other container platforms, an ECS cluster is di-
vided into a control plane and a data plane. The control
plane performs management functions to orchestrate,
configure, and control containerized applications. The

Behind the Scenes: Building a
Serverless Service
Allen Helton | Tyler Technologies

We all love serverless. It makes us
move faster, pay less, and do more!
Have you ever wondered what the
internals of a serverless service looks

like? In this talk, we will go over the broader
architecture of Momento, a serverless caching
service. We cover what it takes to make the
service serverless, the key components used to
build a delightful experience, and the architec-
tural tradeoffs considered in building the service.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-architecture-design/serverless-service/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

9

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

data plane provides resources used to run workloads
themselves.

ECS control plane has been designed to run in AWS
from the start. It provides ECS users a very high level of
integration with other AWS services. This includes, for
example, AWS Identity and Access Management (IAM)
for managing access rights to the ECS API, or Elastic
Load Balancing (ELB) as an ingress to applications run-
ning in ECS. This tight integration means that ECS can-
not be run without connection to the Cloud. For ECS
Anywhere, this therefore results in the architecture of
control and data plane seen in Figure 1.

The ECS Anywhere control
plane is powered by the Cloud-
based ECS control plane in the
AWS region. Two runtime envi-
ronments each are available for
both data planes in the Cloud and
in external data centers:

Fig. 2: An ECS Anywhere Node in detail

Fig. 1: High-level architecture of Amazon ECS

• Amazon EC2: virtual machines
in the Cloud, administrated by
the ECS user;

• Amazon Fargate: the serverless
option to run containers and let
AWS manage underlying infra-
structure in the Cloud;

• Amazon Outposts: AWS-pro-
vided infrastructure with a sub-
set of the AWS Cloud running
on-premises, and

• Traditional servers and VMs: integrated via ECS
Anywhere.

An ECS cluster can include any combination of runtime
environments. Scheduler rules are used in order to selec-
tively place workloads in a runtime environment.

The inner workings of an external compute
node
Almost any external compute infrastructure can be add-
ed to an ECS cluster with ECS Anywhere. With this, we
standardize the API for deploying applications in and

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

10

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

outside the Cloud. Since the control plane operates in the
Cloud and is provided as a managed service, we focus on
the architecture of external compute nodes (Fig. 2).

The requirements for an external compute node are a
supported operating system (such as Ubuntu, CentOS,
or SUSE – see [5] for a complete list) and an outgoing
Internet connection. Two agents are installed on the de-
sired server. First, the AWS Systems Manager agent is in-
stalled. During installation, the server registers with the
AWS Systems Manager (SSM) and can then be config-
ured and managed with it. Next, Docker and the Ama-
zon ECS Container Agent are installed. The latter runs
as a Docker container itself and handles communication
between the Amazon ECS control plane and the local
Docker daemon. This communication is TLS-encrypted
via HTTPS and is initiated by the ECS Container Agent.
Thus, the AWS API must be continuously reachable by

the agent to maintain contact with the ECS control plane.
Containers running in the data plane are not affected by
disconnections between the agent and control plan and
continue their work in case of disruptions. However, if
control plane events such as scaling of tasks occur in the
meantime, they cannot be executed until the connection
is re-established. The official documentation [5] specifies
the AWS API endpoint for firewall configuration.

Only information necessary for container management
is exchanged between the external compute node and the
ECS control plane. This includes, for example, the health
and lifecycle information of nodes and tasks. The ECS
Container Agent does not send any user data, such as the
contents of the mounted volumes, to the control plane.

Access rights needs to be granted to the external com-
pute node so that the agent can authenticate against
the AWS API and communicate with the service in the
Cloud. This is done using IAM roles. They can be man-
aged with the SSM Agent in the same way as EC2 roles
in the Cloud. The SSM Agent uses the server’s finger-
print to identify a server and provide credentials for the
assigned role.

Be aware that external compute nodes are not AWS
managed infrastructure. The responsibility of updating
the operating system and agent remains with the cus-
tomer and needs to be included in regular patch pro-
cesses. The SSM agent can be updated with the AWS
API conveniently [6]. As for the ECS container agent,
AWS maintains ecs-init packages [7].

Fig 3: Creating
a cluster

Listing 1
curl --proto "https" -o "/tmp/ecs-anywhere-install.sh" \
"https://amazon-ecs-agent.s3.amazonaws.com/ecs-anywhere-install-
latest.sh" && \
bash /tmp/ecs-anywhere-install.sh \
--region "eu-central-1" \
--cluster "ecs-anywhere-example" \
--activation-id "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx" \
--activation-code "XXXXxxxxXXXXxxxxXXXX"

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://ecs-anywhere-install.sh
https://amazon-ecs-agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh
https://amazon-ecs-agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh
http://ecs-anywhere-install.sh

11

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

ECS Anywhere in Action
We will walk through the steps to add an Ubuntu 20.04
server as an external compute node to an ECS cluster.
To do this, we first need an ECS cluster, which we create
via the AWS Management Console as follows. For our
purposes, a cluster without compute capacity will do.
We select the option to create a cluster with networking
only (Fig. 3).

We choose a name in the second dialog and with that
the cluster creation is already done. We now find the REG-
ISTER EXTERNAL INSTANCES button for the newly
created cluster under the ECS INSTANCES tab. It creates

an IAM role for the external
compute node and provides
a shell command to register
the node. It needs to be ex-
ecuted on the external com-
pute node. The command
loads the installation script
that gets executed with in-
dividual parameters like the
activation code and the clus-
ter name (Listing 1).

The script installs the
SSM agent as a Linux ser-
vice (Listing 2).

It also installs Docker
and starts the ECS Con-
tainer Agent locally as a
container (Listing 3).

The new external com-
pute node is now listed in
the detailed view of the
ECS cluster under the ECS
INSTACES tab (Fig. 4).

Now, ECS tasks can be
executed on the external compute node in the ECS data
plane. For this, the requiresCompatibilities parameter
of the task needs to be set to EXTERNAL. This option
is set as Launch Type in the dialog for registering a new
task definition with the AWS Management Console
(Fig. 5).

Listing 4 shows the relevant parts of a task definition
for a minimal WordPress installation to be executed on
the external compute node.

Fig. 4: ECS cluster with external compute node

Listing 2
systemctl status amazon-ssm-agent
 amazon-ssm-agent.service - amazon-ssm-agent
 Loaded: loaded (/lib/systemd/system/amazon-ssm-agent.service;
enabled; vendor preset: enabled)
 Active: active (running) since Tue 2021-10-26 10:47:39 UTC; 12min ago
 Main PID: 33931 (amazon-ssm-agen)
 Tasks: 21 (limit: 4435)
 CGroup: /system.slice/amazon-ssm-agent.service
 |–– 33931 /usr/bin/amazon-ssm-agent
 33949 /usr/bin/ssm-agent-worker

Listing 3
docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
607c7fe20ef2 amazon/amazon-ecs-agent:latest "/agent" 11 minutes ago
Up 11 minutes (healthy) ecs-agent

File New: Build a Serverless Event-
Driven Architected Microservice
from Scratch
Chad Green | Glennis Solutions

Event-driven microservice architec-
tures provide a versatile approach to
designing and integrating complex
software systems with independent,

encapsulated components. During this session,
we will focus on the how by starting with an
empty Visual Studio solution and building a
complete event-driven architected microservice
to solve a real-world problem. You will learn how
to design, develop, and deploy a decoupled,
encapsulated responsive, scalable, and inde-
pendent solution. We’ll talk about potential
pitfalls, and you will see how to get around them.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-architecture-design/build-serverless-event-driven-architected-microservice/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

12

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

Networking from ECS Anywhere Tasks
Amazon ECS was designed with the goal of minimizing
operational overhead. Customers focus on their applica-
tion and outsource implementation details of technical
components of the architecture to managed services. One
of these components is load balancing of tasks. ECS uses
the Elastic Load Balancing Service (ELB) to route incom-
ing network traffic for a service to its associated contain-
ers. The ELB service is not available outside of AWS. And
unlike Kubernetes, for instance, the component in the
ECS control plane responsible for managing ELBs cannot
be replaced with one for a different load balancer.

ECS is therefore particularly suitable if not the en-
tire application, but only specific backend components
needs to run outside the Cloud. Some customers running
Big Data applications, for example, invested into own

GPU-based hardware. These
resources can be used with
ECS Anywhere for the corre-
sponding application compo-
nents of a Cloud-based SaaS
product [8].

Tasks running on external
compute nodes need connec-
tivity to the local network in
most cases. ECS Anywhere
supports three network
modes: bridge, host, and
none. Both modes bridge and
host allow to make container
ports externally available via
the hosts’ network connec-
tion, while none disables ex-
ternal network connection for
a container. The official ECS
documentation [9] describes
the different network modes
in more detail. Customers
can build individual solutions
based on this to route traffic

within their network to tasks running on external com-
pute nodes. Such a solution can be as simple as configuring
static IPs and ports of tasks in an existing load balancer.

Some use cases require connectivity between tasks run-
ning on external compute nodes and resources within an
Amazon Virtual Private Cloud (VPC) in the Cloud. A
VPC is a virtual network in an AWS account. It provides
isolation of resources on the network level. If an external
compute node is integrated into a VPC via a site-to-site
VPN connection, tasks placed on it can not only reach
resources such as databases running there. They can also
be placed behind an ELB in the Cloud. This can be use-
ful in hybrid scenarios when parts of an application in
the Cloud need to initiate connections to tasks in ECS
Anywhere. This blog post [10] explains this scenario in
more detail.

Fig. 6: Ingress for ECS tasks via inlets

Fig. 5: Using the GUI to define ECS tasks for external compute nodes

Listing 4
requiresCompatibilities:
- EXTERNAL
containerDefinitions:
- name: wordpress
 image: wordpress:latest
 memory: 256
 cpu: 256
 essential: true
 portMappings:
 - containerPort: 80
 hostPort: 8080
 protocol: tcp
networkMode: bridge
family: wp-anywhere

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

13

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

The use of inlets [11] is an option to make web apps
running in ECS Anywhere externally available without
static configuration of a load balancer. With the tool
developed by OpenFaaS Ltd., connections to private re-
sources can be established in a similar way as the com-
munication between ECS Container Agent and ECS
control plane is handled (Fig. 6).

The tool consists of an inlets exit server and one or
more inlets clients. The clients initiate an encrypted
WebSocket connection to the exit server. This then re-
ceives the requests from the application’s users and for-
wards them over the WebSocket connection to a client
on a node running the actual service. The client takes
over the function of a reverse proxy and forwards the
request to the locally running container’s corresponding
port. The inlets exit server can run anywhere, as long as
inlets clients can establish a network connection to it.
You can find a setup in the context of ECS Anywhere on
Nathan Peck’s blog [12].

Release and deployment of new versions
Controlled deployments of new versions and the abil-
ity to roll back in case of failure are vital for smooth
operations of SaaS applications. ECS offers two com-
ponents that support software vendors in their release
and deployment process: task definitions and services.
Task definitions contain container images and configu-
ration of applications and are maintained in revisions.
This means that a new task definition version is created
for every change (such as updating a container image)
Old versions of the same task definition remain avail-
able for rollbacks. A new revision will not affect the run-
ning instances in a cluster unless it gets deployed. This
means that software vendors can push a release into a
customer’s runtime environment regardless of mainte-
nance windows or other constraints (Fig. 7).

The construct of a service is used in ECS to roll out
new versions of tasks. It is responsible for monitoring
the state of tasks assigned to it. It replaces tasks if er-

Fig. 7: Release process with ECS

Advanced Event-Driven Patterns
With Amazon EventBridge
Sheen Brisals | The LEGO Group

Streamlining microservices communi-
cation has always been a challenge.
This caused confusion and proved
challenging for serverless engineers.

Amazon EventBridge alleviates these concerns
and offers a unified approach to employ even
driven computing. The combination of cloud,
serverless and microservices has taken the
service implementation to a different level.
Though this has accelerated the monolith to
microservices transformation, it has also intro-
duced new complexities around the service to
service communication. With every new service
added to the system, the order of communica-
tions complexity also increases. Though AWS
services such as SNS, SQS and others helped to
some extend, they however failed to offer a
flexible way to enable filtered routing of mes-
sages between microservices. This is where
Amazon EventBridge makes its mark in alleviat-
ing many of these concerns. Amazon Event-
Bridge acts as a choreographer and promotes a
hub-and-spoke communication model between
microservices. With its flexible and powerful
message filtering capability, services can have a
renewed way of performing event-driven
communication between them. This talk will look
at some of the latest developments in Event-
Bridge and the advanced patterns that take
event-driven computing to the next level.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-development/advanced-patterns-amazon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

14

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

rors occur, for example. It also starts new instances if
auto-scaling is activated and the load exceeds a certain
threshold. The deployment configuration in the service
specifies how new deployments will be performed. By de-
fault, it uses a rolling upgrade. This means that new tasks
are started in parallel. The service waits for new tasks en-
tering the RUNNING state before old tasks are stopped.

Rollbacks are also very easy because task definitions
are versioned and deployment control is handled by the
service construct. Services get simply reconfigured for
a rollback and point back to previous versions. Failed
updates are a common reason for this. ECS provides a
deployment circuit breaker option to automatically per-
form rollbacks for any failed service update [13].

Monitoring in ECS
Finally, let us discuss one last important component in any
IT operational concept: monitoring of the system. Logs,
metrics, and events from different sources must be col-

lected centrally to evaluate the system’s overall health.
ECS takes care of lifecycle tasks such as restarting failed
tasks. As a result, relevant ECS control plane events [14]
should be filtered with Amazon EventBridge and forward-
ed to the monitoring system. Control plane events can
show missing CPU and RAM resources in the data plane
or connection failures between control and data plane.

The compute node’s performance metrics can also be
captured with EventBridge. For this, the CloudWatch
Agent is installed on the external compute node [15].
This agent sends metrics such as CPU load, memory
consumption, or network usage to CloudWatch.

Metrics and logs from the application are another
important building block. Fluent Bit [16] is a common
solution for routing container logs and metrics to cen-
tral logging systems. Fluent Bit defines a data pipeline to
individually process log events (Fig. 9).

The data pipeline uses input plug-ins to generate event
streams from different sources, such as log files or the

Fig. 9: The data
pipeline for
logstreams in
Fluent Bit

Fig. 8: Deploying a new version with ECS

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

15

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

system journal. Parsers are used to make further process-
ing in the pipeline efficient. These convert unstructured
strings into structured objects with key-value pairs. Then,
filters are used to manage events in the data stream. The
events can be enriched by a filter with context like the
runtime environment’s metadata. After preprocessing is
complete, the events are stored in a buffer to prevent any
data loss. During routing, a rule-based decision is made
which data sinks must receive an event. Lastly, the events
are written to the data sinks via output plug-ins. Current-
ly, Fluent Bit offers over 70 output plug-ins, which allows
events to be sent to Prometheus, DataDog, or Kafka, for
example.

For AWS container services—and thus, for ECS Any-
where – AWS FireLens and the AWS for Fluent Bit con-
tainer image are convenient ways of integrating Fluent
Bit into a workload. Fluent Bit can be configured directly
in the task definition of ECS tasks [17], which then au-
tomatically enriches events with ECS-specific metadata.

 The chart in Figure 10 shows the flow of log events
and metrics into the centralized monitoring system.

Conclusion
That concludes this article. We have discussed situations
where software vendors face the challenge of deploy-
ing their SaaS solution partially or fully on customer-
operated infrastructure. With ECS Anywhere, we took
a look at a container platform that can help standardize
deployment and operations between cloud and on-prem-
ises. In the next article, we will see how the Kubernetes
service EKS Anywhere differs from ECS Anywhere.

Links & References

 [1] https://www.bloomberg.com/press-releases/2020-07-30/

software-as-a-service-saas-market-could-exceed-600-billion-

by-2023

 [2] https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/Welcome.html

 [3] https://docs.aws.amazon.com/eks/latest/userguide/what-is-

eks.html

 [4] https://docs.docker.com/cloud/ecs-integration/

 [5] https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/ecs-anywhere.html

 [6] https://docs.aws.amazon.com/systems-manager/latest/

userguide/ssm-agent-automatic-updates.html

 [7] https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/ecs-anywhere-updates.html

 [8] https://aws.amazon.com/blogs/containers/running-gpu-based-

container-applications-with-amazon-ecs-anywhere/

 [9] https://docs.aws.amazon.com/AmazonECS/latest/

bestpracticesguide/networking-networkmode.html

[10] https://aws.amazon.com/blogs/containers/building-an-

amazon-ecs-anywhere-home-lab-with-amazon-vpc-network-

connectivity/

[11] https://github.com/inlets/inletsctl

[12] https://nathanpeck.com/ingress-to-ecs-anywhere-from-

anywhere-using-inlets/

[13] https://aws.amazon.com/blogs/containers/announcing-

amazon-ecs-deployment-circuit-breaker/

[14] https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/ecs_cwe_events.html

[15] https://docs.aws.amazon.com/AmazonCloudWatch/latest/

monitoring/install-CloudWatch-Agent-commandline-fleet.html

[16] https://fluentbit.io

[17] https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/using_firelens.html

Fig. 10: Data flows for monitoring ECS Anywhere workloads

Markus Kokott is a Solutions Architect at Amazon Web
Services. He advises software vendors in their SaaS journey
and helps his customers build and modernize products for
the Cloud. Technologically, Markus is especially interested
in the areas of DevOps and containers.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://www.bloomberg.com/press-releases/2020-07-30/software-as-a-service-saas-market-could-exceed-600-billion-by-2023
https://www.bloomberg.com/press-releases/2020-07-30/software-as-a-service-saas-market-could-exceed-600-billion-by-2023
https://www.bloomberg.com/press-releases/2020-07-30/software-as-a-service-saas-market-could-exceed-600-billion-by-2023
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.docker.com/cloud/ecs-integration/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-anywhere.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-anywhere.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-automatic-updates.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-automatic-updates.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-anywhere-updates.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-anywhere-updates.html
https://aws.amazon.com/blogs/containers/running-gpu-based-container-applications-with-amazon-ecs-anywhere/
https://aws.amazon.com/blogs/containers/running-gpu-based-container-applications-with-amazon-ecs-anywhere/
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-networkmode.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-networkmode.html
https://aws.amazon.com/blogs/containers/building-an-amazon-ecs-anywhere-home-lab-with-amazon-vpc-network-connectivity/
https://aws.amazon.com/blogs/containers/building-an-amazon-ecs-anywhere-home-lab-with-amazon-vpc-network-connectivity/
https://aws.amazon.com/blogs/containers/building-an-amazon-ecs-anywhere-home-lab-with-amazon-vpc-network-connectivity/
https://github.com/inlets/inletsctl
https://nathanpeck.com/ingress-to-ecs-anywhere-from-anywhere-using-inlets/
https://nathanpeck.com/ingress-to-ecs-anywhere-from-anywhere-using-inlets/
https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/
https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html
https://fluentbit.io
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html

16

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

By Markus Kokott

In the previous article about SaaS operations at the custo-
mer site, we looked at Amazon ECS Anywhere, a platform
that allows external hardware to be added to a control
plane fully managed in the Cloud. We saw that software
vendors and their customers can greatly reduce operatio-
nal overhead in on-premises deployment using ECS Any-
where and can standardize their delivery and operational
concepts across environments. If a team is considering de-
ploying an application with containers, ECS isn’t the only
option. Kubernetes is likely to be included in the shortlist
of platforms in most cases. 88% of all companies from
a recent Red Hat study [1] state they are using Kuber-
netes – 74% of which in production. This wide adopti-
on in the industry motivated the fast development of a
huge ecosystem around
Kubernetes. The Cloud
Native Computing
Foundation (CNCF)
Landscape lists over
a thousand projects,
products, and partners
[2]. This provides SaaS
providers with a big
benefit: many building
blocks needed in SaaS
are available for integ-
ration and don’t need to
be build by themselves.

Another advantage is
the cross-environment
standardization of ap-
plication deployment
and operations. If SaaS
providers develop their

product for Kubernetes as a runtime environment, the
platform serves as an abstraction layer and reduces de-
velopment and support efforts in hybrid scenarios – af-
ter all, the basic deployment and operation concepts do
not differ between the SaaS and the external customer
environment. In this article, we therefore look at how an
on-premises Kubernetes environment can look like that
promotes the portability of an application.

Kubernetes Overview
A Kubernetes cluster can be roughly divided into two
parts. The control plane contains software components
for operating the cluster. This includes the Kubernetes
API for externally changing the cluster state (for examp-
le, by administrators), controllers for processing events
in the cluster (for example, scaling), and a key-value

Fig. 1: Overview of a Kubernetes cluster’s components

In Uncharted Territory: SaaS Operations at the Customer - Part 2

Kubernetes for
In-house Operations
Software vendors need to decide for a suitable target platform, if they want to offer
their product as Software-as-a-Service (SaaS) in the Cloud as well as for self-hosting
on-premises. Today it is likely that a large portion of on-premises customers are alrea-
dy running Kubernetes clusters. In this article, we’ll take a look at how SaaS providers
can benefit from an open source Kubernetes distribution maintained by AWS.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

17

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

store for managing state in the cluster (etcd). High avai-
lability, seamless maintenance without interuptions and
auto-scaling of the control plane is mandatory for pro-
ductive SaaS offerings in Kubernetes.

The second part of a Kubernetes cluster is the data
plane. This is where the scheduler places the actual wor-
kload. In addition to a container runtime like contai-
nerd, kubelet is an agent for communicating with the
control plane. Kube-proxy is a proxy for network traffic
on all nodes in the data plane (Fig. 1).

Even though Kubernetes can simplify SaaS solutions’
operations, the platform is complex and calls for a high
level of expertise. Dedicated platform teams are usu-
ally tasked with running the Kubernetes cluster. Simi-
lar to operational expenses for edge systems (such as
databases or storage clusters), software vendors should
consider managed Kubernetes services from the Cloud
provider to help reduce the total cost of ownership.

Amazon EKS – Kubernetes as a Service
Amazon Web Services (AWS) offers Amazon Elastic
Kubernetes Service (EKS), a CNCF-certified Kuberne-
tes distribution as a managed service. This certification
means that EKS follows defined standards and compati-
bility checks are executed continously. This means that
an application running in EKS can also be executed in
other CNCF-certified

EKS provides the Kubernetes Control Plane as a ma-
naged service. Users are no longer responsible for the
majority of components in Figure 1, and the cluster ar-
chitecture is simplified, as seen in Figure 2. Operational
tasks around the Data Plane can also be reduced with
Managed Node Groups [3] and AWS Fargate [4].

AWS works very closely with the open source commu-
nity and is an active maintainer of Kubernetes plug-ins
and contributes to the core product. More information
about the commitment of AWS to the open source com-
munity around Kubernetes and containers can be found
in the public roadmap on GitHub [5].

Runs in Kubernetes = runs everywhere?
When people talk about the advantages of Kubernetes, the
word “portability” quickly comes up. Software vendors

who want to offer their products in different environ-
ments are looking for exactly that: a deployment model
that is as portable as possible. Unfortunately, a closer look
shows that even with Kubernetes, complex products can
only achieve portability to a limited extent [6].

Processes, concepts, and capabilities in your team make
Kubernetes naturally portable with an abstraction from
the infrastructure provider’s underlying hardware and
APIs. However, applications are selfcontained and work
without external dependencies only in the simplest cases.

For example, many SaaS solutions integrate managed
services from the Cloud. For basic services like relatio-
nal databases or message queues, self-managed alterna-
tives can be deployed in Kubernetes or the on-premises
infrastructure. But for other, often higher-value services
(like AI/ML services or highly specialized databases),
you need alternatives. That leads to differences between
on-premises and Cloud deployments.

But the Kubernetes platform can also become a buil-
ding block, allowing the two deployment models to di-
verge. Kubernetes is evolving rapidly and functionalities

Fig. 2: Amazon EKS
high-level architecture

Going full SILO – running on
3000 AWS Accounts
Patrick Blitz | ProGlove

Proglove makes wearable barcode
scanners - and a IoT Analytics & Device
Mgmt Platform. To comply with
customer (security) requirements and

optimize development, we went all in on Silo’d
architecture for this. Our serverless, eventdriven
IoT architecture is by now running on 3000 AWS
accounts. In this talk, we’ll dive into the pros and
cons of this architecture, the learnings we’ve had
scaling this architecture up and our recommen-
dations for your serverless architecture.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-architecture-design/serverless-architecture-silo//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

18

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

are already being used productively in beta or even alpha
status. Deployment for a current platform version as a
managed service in the Cloud may fail on-premises since
functions used in templates aren’t available. Furthermo-
re, Kubernetes is very flexible and allows operations
teams to extend and change the platform’s functionali-
ty and behavior with plug-ins or WebHooks. The large
number of available plug-ins increases the complexity of
quality assurance for software products. This is compa-
rable to the effort of testing a native app for the highly
fragmented market of Android devices.

Therefore, software vendors should use standardized
Kubernetes distributions to at least reduce complexity
related to the platform itself. One distribution that’s in-
teresting for SaaS providers with an AWS-based soluti-
on is the free, CNCF-certified open source distribution
Amazon EKS Distro (EKS-D) [7]. It’s a distribution of
Kubernetes and other core components used by AWS
to deploy EKS in the Cloud. This includes binaries and
containers from the open source Kubernetes project,
etcd, networking, and storage plug-ins. All components
are continuously tested for compatibility. EKS-D also
provides extended support for Kubernetes releases after
community support expired by updating releases of pre-
vious versions with the latest critical security patches.

Amazon EKS Anywhere
Amazon EKS Anywhere, released in September 2021, is a
new option for running Kubernetes clusters on your own
infrastructure. It’s a bundle consisting of EKS-D and a
number of third-party open source components common-
ly used with Kubernetes. By using EKS Anywhere, teams
reduce the overhead associated with on-premises Kuber-
netes operations. All components included in the bund-

le are updated by AWS
and compatibility is va-
lidated. EKS Anywhere
enables the consistent
generation of clusters.
Additionally, SaaS pro-
viders can keep their too-
ling homogeneous across
Cloud and on-premises
deployments.

Unlike Amazon ECS
Anywhere discussed in
the first article of this se-
ries, the data plane and
the control plane of EKS
Anywhere are both lo-
cated outside the Cloud.
The deployment options
for EKS and EKS Any-
where are shown in Fi-
gure 3.

When using Amazon
EKS and a fully AWS-
managed control plane

in the Cloud, nodes for the data plane can be composed
of any of the following runtime environments:

• Self-Managed Node Groups: EC2 instances fully
managed by the customer.

• Managed Node Groups: EC2 instances that AWS
provides lifecycle management and EKS-optimized
base images for.

• Amazon Fargate: The serverless compute option for
containers, where AWS fully manages the underlying
infrastructure.

• Amazon Outposts: AWS-provided infrastructure
with a set of AWS Cloud Services for on-premises
deployments.

The options for Amazon EKS Anywhere are more homo-
genous. Control and data plane need to be deployed to
either VMs in a VMware vSphere cluster or bare metal
machines in a cluster managed by the bare metal provisi-
oning engine Tinkerbell [8]. AWS provides base images
for nodes in the EKS Anywhere cluster independent of
the choice of the infrastructure provisioner. Customers
can choose between Ubuntu or Bottlerocket — an open
source operating system optimized for container ope-
ration [9]. As you’ll see below, EKS Anywhere uses the
Kubernetes project Cluster API [10], which introduces
Kubernetes Custom Resource Definitions (CRDs) for in-
frastructure components like nodes. Therefore, cluster
lifecycle management can be performed by Kubernetes
itself. Cluster API acts as a proxy to the specific infra-
structure provider.

When it comes to components included in the EKS
Anywhere bundle, the open source Kubernetes distri-
bution EKS-D is central. As previously mentioned, this

Fig. 3: Deployment options for Amazon EKS and Amazon EKS Anywhere

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

19

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

is a compilation of Kubernetes and some dependencies
used by AWS for deploying Amazon EKS in the Cloud.
Additionally, EKS Anywhere includes lifecycle manage-
ment tools for the cluster. It includes eksctl – developed
by Weaveworks and AWS – to create, scale, upgrade,
and tear down clusters. For GitOps workflows, EKS
Anywhere includes Flux v2 – also from Weaveworks.
For cluster access management, aws-iam-authenticator
– for integration with AWS IAM – and OpenID Con-
nect (OIDC) support are available. EKS Anywhere also
bundles together the Node operating system images
(Ubuntu, Bottlerocket) and the container network in-
terface (CNI) plug-in Cilium. Of course, EKS Anywhere
offers the usual flexibility with extensions and integra-
tions for components that aren’t currently available in

the bundle. Later, we’ll see an example of this and ena-
ble load balancing with MetalLB.

Cluster management with Cluster API
A central component in EKS Anywhere is the Project
Cluster API (CAPI). It provides declarative Kubernetes
APIs for provisioning, upgrading, and operating Kuber-
netes clusters. It simplifies tasks around cluster provisi-
oning and helps standardize them across infrastructure
providers. Today, EKS Anywhere supports Docker for
development and test systems as well as vSphere and
BareMetal for production environments.

You need access to the infrastructure provider’s API
and a dedicated administration server to get started. On
this server, eksctl is used to generate the cluster configu-
ration and execute the provisioning process. Before the
actual workload cluster is created in the infrastructure
provider’s environment, eksctl creates a local bootstrap
cluster with kind [11] on the administrator server.

Figure 4 shows the provisioning process for the VM-
ware vSphere provider in detail. In this bootstrap clus-
ter, the CAPI objects are initially created (1 in Fig. 4).
CAPI objects are Custom Resource Definitions (CRDs).
For example: Machine as a representation of a node in
the cluster, or BoostrapData as a representation of the
cloud-init scripts for newly added nodes. Nodes for con-
trol and data plane described via CRDs are then created
in the vSphere cluster (2).

Once the workload cluster is successfully started, the
bootstrap cluster begins configuration. The Cilium CNI
is installed for networking in the workload cluster (3)
and storage for persistent volumes is created in the vS-
phere cluster (4). Since we only need the bootstrap clus-
ter temporarily to create the workload cluster, the CAPI
objects are finally transferred to the workload cluster
(5). For future maintenance of the cluster, the temporary
bootstrap cluster is restarted and CAPI objects are syn-
chronized with the workload.

Fig. 4: Provisioning process of an EKS Anywhere cluster on VMware vSphere

Serverless-Side Rendering
Micro-Frontends
Luca Mezzalira | AWS

Distributed architectures have helped
several organizations to scale and
create the agility needed to help the
business evolving in different direc-

tions. Many are familiar with microservices, but
on the frontend, since 2016, we started to see a
revolution that is getting bigger and bigger
every year. In this talk I cover how to build a
server-side rendering application in AWS using
Serverless services, helping every team to
maintain their independence and providing
great performance to the customers.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-architecture-design/serverless-micro-frontends//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

20

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

The provisioning process for BareMetal is also based
on Cluster API and works similar. The main difference
with this infrastructure provider is the provisioning of
cluster nodes. It uses the Tinkerbell engine and its compo-
nent to install base images using preboot execution envi-
ronment (PXE) on physical machines on the same (Layer
2) network. Please refer to the official documentation of
Tinkerbell [7] and EKS Anywhere’s BareMetal provisio-
ner [12] to get started with this deployment option.

EKS Anywhere in Action
The first step on our way to an EKS Anywhere cluster
is setting up an administration server. For this, we need
a physical or virtual machine meeting the following re-
quirments:

• 4 CPU cores, 16 GB RAM and 30 GB free hard disk
space,

• Mac OS (from version 10.15) or Ubuntu (from versi-
on 20.04.2 LTS) for the operating system, and

• Docker (from version 20.0.0).

The tools eksctl and eksctl-anywhere need to be ins-
talled on that server. One option is to use homebrew:

brew install aws/tap/eks-anywhere
Additional installation options can be found in EKS

Anywhere’s official documentation [13].
EKS Anywhere currently supports three providers for

cluster generation: vSphere, BareMetal and Docker. The
Docker provider is intended for development and tes-
ting and doesn’t need any special hardware or licences.
Therefore, in the following example we’ll use the Do-
cker provider. First, create a cluster configuration with
the following commands:

export CLUSTER_NAME=hello-eks-anywhere
eksctl anywhere generate clusterconfig $CLUSTER_NAME \
 --provider docker > $CLUSTER_NAME.yaml

This template already contains all of the information
you need to create an EKS Anywhere cluster. Based on
this, you can adapt the cluster to your own needs. For
example, the CIDR ranges can be adapted to the given
network, control and data plane can be scaled hori-
zontally, OIDC providers can be integrated for access
management, or GitOps can be activated for the cluster
[14]. We will continue working here with the generated
template (Listing 1) without making any changes.

Create the EKS Anywhere cluster with this command:

eksctl anywhere create cluster -f $CLUSTER_NAME.yaml

Now, provider-specific conditions are validated before
the local bootstrap cluster is started. If this was success-
ful, the process from Figure 4 is executed. The eksctl
tool writes a summary of individual steps to the com-
mand line output. Finally, eksctl writes a kubeconfig to
the working directory. We can use this to access the
newly created EKS Anywhere cluster (Listing 2).

Now, we can place workloads in our EKS Anywhere
cluster. For example, we can use kubectl to deploy a
demo application:

kubectl apply -f "https://anywhere.eks.amazonaws.com/manifests/
 hello-eks-a.yaml"

After deploying the EKS Anywhere demo application, a
pod runs in the default namespace:

kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-eks-a-9644dd8dc-4l2z9 1/1 Running 0 13s

Networking and Load Balancing
In the demo application’s manifest, a service with the
type NodePort was also created for the pod (Listing 3).

Listing 1
apiVersion: anywhere.eks.amazonaws.com/v1alpha1
kind: Cluster
metadata:
name: hello-eks-anywhere
spec:
clusterNetwork:
cniConfig:
cilium: {}
pods:
cidrBlocks:
- 192.168.0.0/16
services:
cidrBlocks:
- 10.96.0.0/12
controlPlaneConfiguration:
count: 1
datacenterRef:
kind: DockerDatacenterConfig
name: hello-eks-anywhere
externalEtcdConfiguration:
count: 1
kubernetesVersion: "1.23"
managementCluster:
name: hello-eks-anywhere
workerNodeGroupConfigurations:
- count: 1
name: md-0

apiVersion: anywhere.eks.amazonaws.com/v1alpha1
kind: DockerDatacenterConfig
metadata:
name: hello-eks-anywhere
spec: {}

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://anywhere.eks.amazonaws.com/manifests/
http://anywhere.eks.amazonaws.com/v1alpha1
http://anywhere.eks.amazonaws.com/v1alpha1

21

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

With services of type NodePort, a port is reserved on
all nodes in the cluster. This makes it possible to address
the service from outside the cluster via the IPs of the no-
des in the cluster. To invoke the demo application, we’ll
proceed as in Listing 4.

This information can now be used to statically confi-
gure external load balancers and route traffic using No-
dePorts to pods in EKS Anywhere. With Kubernetes in
the Cloud, you’re more likely to use LoadBalancer type
services to automate the process.

Services of the LoadBalancer type are assigned an
IP address independent of the cluster nodes. It can be
reached externally. A Cloud Controller Manager (CCM)
in the Kubernetes Control Plane is responsible for the al-
location. The component monitors Kubernetes objects
of type Service and executes vendor-specific steps to
provision an IP in the Cloud environment. Additionally,
other controllers can respond to assigning an external
IP and configure external load balancers to make the
service reachable over the Internet. In Amazon EKS, for
instance, native load balancers fully managed by AWS
are deployed with the Elastic Load Balancer Service.

This managed service isn’t available outside the Cloud.
EKS Anywhere supports MetalLB [15] because of this.
It enables LoadBalancer type services on-premises by
dynamically propagating routes to services running in
Kubernetes to the local network outside of the cluster.

MetalLB consists of two components: a control-

Listing 2
cd $CLUSTER_NAME
export KUBECONFIG=${PWD}/${CLUSTER_NAME}-eks-a-cluster.kubeconfig
kubectl get ns
NAME STATUS AGE
capd-system Active 6m38s
capi-kubeadm-bootstrap-system Active 6m56s
capi-kubeadm-control-plane-system Active 6m43s
capi-system Active 7m
capi-webhook-system Active 7m2s
cert-manager Active 7m39s
default Active 8m32s
eksa-system Active 6m13s
etcdadm-bootstrap-provider-system Active 6m53s
etcdadm-controller-system Active 6m51s
kube-node-lease Active 8m34s
kube-public Active 8m34s
kube-system Active 8m34s

Listing 3

apiVersion: v1
kind: Service
metadata:
name: hello-eks-a
spec:

type: NodePort
selector:
app: hello-eks-a
ports:
- port: 80

ler deployed as a ReplicaSet that assures that a single
pod is running all the time and speaker pods deployed
as DaemonSets to make sure one pods runs on each
node in the cluster. While the operator monitors service
creation and IP allocation, speakers are responsible to
propagate service IPs on the local network and route
traffic to a pod backing the requested service. MetalLB
uses the Address Resolution Protocol (ARP) for IPv4
or Neighbor Discovery Protocol (NDP) for IPv6 to an-
nounce nodes responsible for service IP addresses. While
this works without special hardware, it means, that ser-
vices are only accessible for nodes on the same layer
2 network (resolving IP to MAC addresses). MetalLB
supports Border Gateway Protocol (BGP) alternatively.
This allows service IPs to be propagated in wider and
more complex networks, given BGP compatible net-
work infrastructure such as routers with route propaga-
tion is deployed. Figure 5 shows this workflow.

MetalLB can be deployed in an EKS Anywhere cluster by installing a Helm
chart:
helm upgrade --install --wait --timeout 15m --namespace metallb-system
--create-namespace --repo https://metallb.github.io/metallb metallb metallb
For IP allocation to work, MetalLB needs to be configured to use a routable
and available CIDR range for service IPs. We can leverage the Docker provided
IP range for the cluster’s bridge interface in our example:
docker network inspect -f '{{.IPAM.Config}}' kind
[{172.18.0.0/16 172.18.0.1 map[]} {fc00:f853:ccd:e793::/64 map[]}]

Listing 4
kubectl get nodes
NAME STATUS ROLES AGE VERSION
hello-eks-anywhere-76htj Ready control-plane,master 12m v1.21.2-
 eks-1-21
hello-eks-anywhere-md-0-56f4f4cccd-hc6ff Ready <none> 15m v1.21.2-
 eks-1-21

kubectl describe node hello-eks-anywhere-md-0-56f4f4cccd-hc6ff |
 grep InternalIP
InternalIP: 172.18.0.6

kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-eks-a NodePort 10.106.41.211 <none> 80:32626/TCP 12m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 17m

curl http://172.18.0.6:32626

Thank you for using

EKS ANYWHERE
You have successfully deployed the hello-eks-a pod hello-eks-a-
9644dd8dc-4l2z9

For more information check out
https://anywhere.eks.amazonaws.com

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://metallb.github.io/metallb
http://172.18.0.6:32626
https://anywhere.eks.amazonaws.com

22

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

Any range from the 172.18.0.0/16 IP block can be
used. So let us tell MetalLB to reserve 256 IPs from
172.18.200.0/24 by creating the following configurati-
on file:

The config file can be applied like any other Kuber-
netes template and will be picked up by the MetalLB
controller pod:

Kubectl apply -f metallb-config.yaml

We can now create a service of type LoadBalancer for
our demo application:

kubectl expose deployment hello-eks-a --port=80 \

 --type=LoadBalancer --name=hello-eks-a-lb

This new service gets detected by the MetalLB opera-
tor, which allocates an IP address as external IP for the
service:

kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-eks-a NodePort 10.101.120.84 <none> 80:31678/TCP 50m
hello-eks-a-lb LoadBalancer 10.106.82.153 172.18.200.0 80:31354/TCP 46m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 6h5m

Any node on the same layer 2 network can now access
the service by its external IP address. Traffic is routed to
one of the MetalLB speaker pods that in turn routes the
traffic to a pod backing the service:

curl http://172.18.200.0
--

Thank you for using

EKS ANYWHERE
You have successfully deployed the
 hello-eks-a pod
hello-eks-a-866ff6bbc7-krtz4

For more information check out
https://anywhere.eks.amazonaws.com

Unlike with NodePorts, any
service can bind common
ports like 80 or 443 regardless
of other services in the cluster
with MetalLB. However, this
does not solve the task of re-
gistering the services’ external
IP addresses with the clients
or external DNS. This is espe-
cially challenging in a Micro-
service architecture.

Alternatively, we can de-
ploy a single service as an ingress controller and use
path-based routing for our application parts in the
EKS cluster. Emissary Ingress from Ambassador [16]
is the recommended ingress controller for EKS Any-
where. The controller provides an Envoy proxy as an
entry point for our application. It is run as a regular
deployment in Kubernetes and registers a service of the
type LoadBalancer. Emissary Ingress installs a CRD of
the type Mapping. This CRD can be used to register
paths in the reverse proxy for individual services. When
changes are made, the Emissary Ingress control plane
updates the Envoy Proxy configuration. Figure 6 shows
an example. You can find more details about installing
and configuring Emissary Ingress in the EKS Anywhere
documentation [17].

On-premises support from the SaaS
provider
At this point, the SaaS provider has a target environment
for deployments of its on-premises solution that bears

 Listing 5
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
name: first-pool
namespace: metallb-system
spec:
addresses:

- 172.18.200.0-172.18.200.255

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
name: example
namespace: metallb-system

Fig. 5: Creating a load balancer service with kube-vip

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://172.18.200.0
https://anywhere.eks.amazonaws.com
http://metallb.io/v1beta1
http://metallb.io/v1beta1

23

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

a close resemblance to the familiar environment in the
Cloud. This enables the software vendor to take more
operational responsibility in the customer’s on-premises
environment, roll out its processes used in the cloud,
and truly offer its product as a service. But in order to
do this, the software provider’s employees and systems
must have access to the customer’s Kubernetes API. The
following section shows how a lightweight integration
can be done with a core component of EKS Anywhere.

If the software vendor offers its SaaS offering in AWS,
it already manages users, roles and permissions in AWS
Identity and Access Management (IAM) – or an external

Identity Provider (IDP) integ-
rated via AWS IAM Identity
Center. The aws-iam-authen-
ticator project [18] uses the
Kubernetes option to perform
authentication with WebHook
tokens in order to integrate an
existing user management in
IAM with Role Based Access
Contrl (RBAC) in Kubernetes.
The Kubernetes cluster doesn’t
need to have any integration
with the Cloud. Only the pub-
lic AWS API must be accessib-
le through the cluster in order
to validate tokens submitted
by clients. Besides a separation
of concerns – authentication
by AWS IAM and authori-
zation by Kubernetes RBAC
– aws-iam-authenticator pro-
vides an audit trail (in AWS
CloudTrail) and multifactor
authentication for the Kuber-
netes API. Figure 7 shows the
authentication and authoriza-
tion workflow.

For authentication with the aws-iam-authenticator,
pre-signed URLs are used. This kind of URL allows cer-
tain actions to be performed against the AWS API – in
the context of the AWS identity that generated the spe-
cific pre-signed URL. The presigned URL that the aws-
iam-authenticator client generates grants permission to
invoke the AWS interface sts:GetCallerIdentity. Callers
are enabled to determine the unique Amazon Resour-
ce Name (ARN) of the AWS identity. This URL, along
with other information such as the cluster ID, is con-
verted into a token and submitted to the Kubernetes
API (1 in Figure 7). The aws-iam-authenticator server

component is installed as a
DaemonSet in the Kuberne-
tes cluster. It integrates with
the Kubernetes authentica-
tion process via WebHooks
(2). The token is validated
before the pre-signed URL is
used to determine the ARN
(3). Now, a Kubernetes Con-
figMap (AWSIamConfig) is
searched for the mapping to
a Kubernetes identity for this
ARN (4). This completes the
authentication process. The
request comes from a valid
AWS identity. And there is
a Kubernetes identity in the
cluster associated with it.
The latter is returned to the Fig. 7: Authentication and authorization with aws-iam-authenticator

Fig. 6: Path-based routing with Emissary Ingress as reverse proxy

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

24

WHITEPAPER Serverless Architecture & Design

@ServerlessCon # ServerlessConserverless-architecture.io

Kubernetes API (5), which uses RBAC to check if the
desired request (for example, launching a pod in a parti-
cular namespace) is allowed for the Kubernetes identity
(6). Finally, the appropriate result of the call is returned
to the client (7).

Listing 6 shows an example of the AWSIamCon-
fig. Both IAM roles and users from different AWS
accounts can be used. After successful authentication,
the identities are mapped to users who can then be
mapped to RBAC permissions using their group mem-
bership. Because the initial AWS user isn’t known
when IAM roles are used, it’s a best practice to set
a dynamic user name with additional context infor-
mation to for the audit trail. You can find detailed
information in the aws-iam-authenticator documen-
tation [18].

To use the workflow described above, you must
enable the aws-iam-authenticator when creating the
cluster. Do this by extending the cluster template from
Listing 1. The official documentation [19] describes
the relevant sections. Alternatively, OIDC providers
can be used for authentication [20] via other external
IDPs.

Conclusion
When converting a product to a SaaS offering, soft-
ware vendors often face the question of how to realize
a deployment for Cloud and on-premises environ-
ments in parallel. In both parts of this article series,
we looked at the hybrid deployment of SaaS solutions.
We looked at Amazon ECS Anywhere and Amazon
EKS Anywhere, two solutions that let software ven-
dors use the operating processes and tools used for
their Cloud-based offerings in on-premises environ-
ments as well.

Markus Kokott is a Solutions Software Architect at Ama-
zon Web Services. He helps software manufacturers mo-
dernize their products for the Cloud. Technologically,
Markus is especially interested in the areas of DevOps and
containers.

Links & References

[1] https://www.redhat.com/en/resources/kubernetes-adoption-
security-market-trends-2021-overview

[2] https://landscape.cncf.io

[3] https://docs.aws.amazon.com/eks/latest/userguide/managed-
node-groups.html

[4] https://docs.aws.amazon.com/eks/latest/userguide/fargate.
html

[5] https://github.com/aws/containers-roadmap

[6] https://www.infoworld.com/article/3574853/kubernetes-and-
cloud-portability-its-complicated.html

[7] https://distro.eks.amazonaws.com

[8]https://tinkerbell.org/

[9] https://github.com/bottlerocket-os/bottlerocket

[10] https://cluster-api.sigs.k8s.io/introduction.html

[11] https://kind.sigs.k8s.io/docs/user/quick-start/

[12] https://anywhere.eks.amazonaws.com/docs/reference/
baremetal/bare-prereq/

[13] https://anywhere.eks.amazonaws.com/docs/getting-started/
install/

[14] https://anywhere.eks.amazonaws.com/docs/reference/
clusterspec/

[15] https://metallb.universe.tf

[16] https://www.getambassador.io/docs/emissary/

[17] https://anywhere.eks.amazonaws.com/docs/tasks/workload/
ingress/

[18] https://github.com/kubernetes-sigs/aws-iam-authenticator

[19] https://anywhere.eks.amazonaws.com/docs/reference/
clusterspec/iamauth/

[20] https://anywhere.eks.amazonaws.com/docs/reference/
clusterspec/oidc/

Learnings of an event-based
serverless application to broadcast
real-time traffic alerts
Frédéric Barthelet | Theodo

Brand new to the serverless world, I’ve
been amazed by the diversity of
solution offered by serverless infra-
structure to implement RATPDev’s

new traffic alerting system to reduce commut-
er’s frustration. Let’s dive together in the imple-
mentation I chose using DynamoDB streams
and EventBridge !

Listing 6
apiVersion: v1
data:
mapRoles: |
- roleARN: arn:aws:iam::000000000000:role/KubernetesAdmin
username: admin:{{SessionName}}
groups:
- system:masters
mapUsers: |
- userarn: arn:aws:iam::111122223333:user/admin
username: admin
groups:
- system:masters
- userarn: arn:aws:iam::444455556666:user/ops-user
username: ops-user
groups:
- eks-console-dashboard-full-access-group

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://landscape.cncf.io
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://github.com/aws/containers-roadmap
https://www.infoworld.com/article/3574853/kubernetes-and-cloud-portability-its-complicated.html
https://www.infoworld.com/article/3574853/kubernetes-and-cloud-portability-its-complicated.html
https://distro.eks.amazonaws.com
https://tinkerbell.org/
https://github.com/bottlerocket-os/bottlerocket
https://cluster-api.sigs.k8s.io/introduction.html
https://kind.sigs.k8s.io/docs/user/quick-start/
https://anywhere.eks.amazonaws.com/docs/reference/baremetal/bare-prereq/
https://anywhere.eks.amazonaws.com/docs/reference/baremetal/bare-prereq/
https://anywhere.eks.amazonaws.com/docs/getting-started/install/
https://anywhere.eks.amazonaws.com/docs/getting-started/install/
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/
https://metallb.universe.tf
https://www.getambassador.io/docs/emissary/
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/iamauth/
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/iamauth/
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/oidc/
https://anywhere.eks.amazonaws.com/docs/reference/clusterspec/oidc/
https://serverless-architecture.io/serverless-architecture-design/event-based-serverless-real-time-traffic-alerts//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

25

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

by Kamesh Sampath

In this article, we will deal with setting up a develop-
ment environment that is suitable for Knative in version
0.6.0. The second part deals with the deployment of
your first serverless microservice. The basic requirement
for using Knative to create serverless applications is a
solid knowledge of Kubernetes. If you are still inexperi-
enced, you should complete the official basic Kubernetes
tutorial [1].

Before we get down to the proverbial “can do”, a few
tools and utilities have to be installed:

• Minikube [2]
• kubectl [3]
• kubens [4]

For Windows users, WSL [5] has proven to be quite use-
ful, so I recommend installing that as well.

Setting up Minikube
Minikube is a single node Kubernetes cluster that is ide-
al for everyday development with Kubernetes. After the
setup, the following steps must be performed to make
Minikube ready for deployment with Knative Serving.
Listing 1 shows what this looks like in the code.

First, a Minikube profile must be created, which is
what the first line achieves. The second command is

then used to set up a Minikube instance that contains
8 GB RAM, 6 CPUs and 50 GB hard disk space. The
boot command also contains a few additional configu-
rations for the Kubernetes cluster that are necessary to
get Knative up and running. It is also important that
the used Kubernetes version is not older than version
1.12.0, otherwise Knative will not work. If Minikube
doesn’t start immediately, it’s completely normal; it
can take a few minutes until the initial startup is com-
plete, so you should be a little patient when setting it
up.

Setting up an Istio Ingress Gateway
Knative requires an Ingress Gateway to route requests to
Knative Services. In addition to Istio [6], Gloo [7] is also

Listing 1
minikube profile knative

minikube start -p knative --memory=8192 --cpus=6 \
 --kubernetes-version=v1.12.0 \
 --disk-size=50g \
 --extra-config=apiserver.enable-admission-plugins="LimitRanger,Namesp
aceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStora
geClass,MutatingAdmissionWebhook"

The journey towards mastering Serverless applications

Your First Step
Towards Serverless
Application
Development
Kamesh Sampath shows us how to master the first steps on the journey towards a
serverless application. He shows how to set up the right environment and takes us
through its deployment.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

26

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

supported as an Ingress Gateway. For our example we
will use Istio, though. The following steps show how to
perform a lightweight installation of Istio that contains
only the Ingress Gateway:

curl -L https://raw.githubusercontent.com/knative/serving/release-0.6/
third_party/istio-1.1.3/istio-lean.yaml \
| sed 's/LoadBalancer/NodePort/' \
| kubectl apply --filename –

Like the setup of Minikube, the deployment of the Istio
Pod takes a few minutes. With the command kubectl —
namespace istio-system get pods –watch you can see the
status; the overview is finished with Ctrl + C. Whether
the deployment was successful or not can be easily de-
termined with the command kubectl –namespace istio-
system get pods. If everything went well, the output
should look like Listing 2.

Installing Knative Serving
The installation of Knative Serving [8] allows us to run
serverless workloads on Kubernetes. It also provides
automatic scaling and tracking of revisions. You can
install Knative Serving with the following commands:

kubectl apply --selector knative.dev/crd-install=true \
--filename https://github.com/knative/serving/releases/download/v0.6.0/
 serving.yaml

kubectl apply --filename https://github.com/knative/serving/releases/
download/v0.6.0/serving.yaml --selector networking.knative.dev/
 certificate-provider!=cert-manager

Again, it will probably take a few minutes until the
Knative Pods are deployed; with the command kubectl
–namespace knative-serving get pods –watch you can
check the status. As before, the check can be aborted
with Ctrl + C. With the command kubectl –namespace
knative-serving get pods you can check if everything

is running. If this is the case, an output like in Listing
3 should be displayed.

Deploy demo application
The application we want to create for demonstration is
a simple greeting machine that outputs “Hi”. For this
we use an existing Linux container image, which can be
found on the Quay website [9].

The first step is to create a traditional Kubernetes
deployment that can then be modified to use serverless
functionality. This will make clear where the actual dif-
ferences lie and how to make existing deployments using
Knative serverless.

Create a Kubernetes resource file
The following steps show how to create a Kubernetes
resource file. To do this, you must first create a new file
called app.yaml, into which the code in Listing 4 must
be copied.

Create the deployment and service
By applying the previously created YAML file, we can
create the deployment and service. This is done using
the kubectl apply –filename app.yaml command. Also,
at this point, the command kubectl get pods –watch can
be used to get information about the status of the ap-
plication, while CTRL + C terminates the whole thing.
If all went well, we should now have a deployment
called greeter and a service called greeter-svc (Listing 5).

To activate a service, you can also use a Minikube
shortcut like minikube service greeter-svc, which opens
the service URL in your browser. If you prefer to use
curl to open the same URL, you have to use the com-
mand curl $(minikube service greeter-svc –url). Now
you should see a text that looks something like this: Hi
greeter => ‘9861675f8845’ : 1

Listing 2
NAME READY STATUS RESTARTS AGE
cluster-local-gateway-7989595989-9ng8l 1/1 Running 0 2m14s
istio-ingressgateway-6877d77579-fw97q 2/2 Running 0 2m14s
istio-pilot-5499866859-vtkb8 1/1 Running 0 2m14s

Listing 3
NAME READY STATUS RESTARTS AGE
activator-54f7c49d5f-trr82 1/1 Running 0 27m
autoscaler-5bcd65c848-2cpv8 1/1 Running 0 27m
controller-c795f6fb-r7bmz 1/1 Running 0 27m
networking-istio-888848b88-bkxqr 1/1 Running 0 27m
webhook-796c5dd94f-phkxw 1/1 Running 0 27m

Implement a Serverless Data
Platform with Microsoft Azure
Roberto Freato | Witailer

Azure is now a first-class suite of
service even for the Data Platform
stack. This session evolves the one of
last year, adding new things and

thoughts learned during the way. I would like to
share my thoughts about building a custom
Data Platform, using few tools like Synapse,
DataLake Storage and something more. As a
result, we will implement a Data Platform
strategy in a serverless mode, on a consumption-
based model.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://raw.githubusercontent.com/knative/serving/release-0.6/third_party/istio-1.1.3/istio-lean.yaml
https://raw.githubusercontent.com/knative/serving/release-0.6/third_party/istio-1.1.3/istio-lean.yaml
https://github.com/knative/serving/releases/download/v0.6.0/
https://github.com/knative/serving/releases/download/v0.6.0/serving.yaml
https://github.com/knative/serving/releases/download/v0.6.0/serving.yaml
https://serverless-architecture.io/serverless-development/serverless-data-platform-microsoft-azure//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

27

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

Migrating the traditional Kuebernetes
deployment to Serverless with Knative
The migration starts by simply copying the app.yaml
file, naming it serverless-app-yaml and updating it to the
lines shown in Listing 6.

If we compare the traditional Kubernetes application
(app.yaml) with the serverless application (serverless-
app.yaml), we find three things. Firstly, no additional
service is needed, as Knative will automatically create
and route the service. Secondly, since the definition of
the service is done manually, there is no need for selec-

tors anymore, so the following lines of code are omit-
ted:

selector:
 matchLabels:
 app: greeter

Lastly, under TEMPLATE | SPEC | CONTAINERS
name: is omitted because the name is automatically gen-
erated by Knative. In addition, no ports need to be de-
fined for the probe’s liveness and readiness.

Listing 5
$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
greeter 1 1 1 1 16s

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
greeter-svc NodePort 10.110.164.179 8080:31633/TCP 50s

Listing 6
apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: greeter
spec:
 template:
 metadata:
 labels:
 app: greeter
 spec:
 containers:
 - image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus
 resources:
 limits:
 memory: "32Mi"
 cpu: "100m"
 ports:
 - containerPort: 8080
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz

Listing 4
apiVersion: apps/v1
kind: Deployment
metadata:
 name: greeter
spec:
 selector:
 matchLabels:
 app: greeter
 template:
 metadata:
 labels:
 app: greeter
 spec:
 containers:
 - name: greeter
 image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus
 resources:
 limits:
 memory: "32Mi"
 cpu: "100m"
 ports:
 - containerPort: 8080
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 readinessProbe:
 httpGet:
 path: /healthz
 port: 8080

apiVersion: v1
kind: Service
metadata:
 name: greeter-svc
spec:
 selector:
 app: greeter
 type: NodePort
 ports:
 - port: 8080
 targetPort: 8080

Listing 7
$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE VAILABLE AGE
greeter 1 1 1 1 30m
greeter-bn8cm-deployment 1 1 1 1 59s

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://quay.io/rhdevelopers/knative-tutorial-greeter
http://quay.io/rhdevelopers/knative-tutorial-greeter

28

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

Deploying the Serverless App
The deployment follows the same pattern as before, us-
ing the command kubectl apply –filename serverless-app.
yaml. The following objects should have been created
after the successful deployment of the serverless appli-
cation: The deployment should now have been added
(Listing 7). A few new services should also be available
(Listing 8), including the ExternalName service, which
points to istio-ingressgateway.istio-system.svc.cluster.
local. There should also be a Knative service available
with a URL to which requests can be sent (Listing 9).

But Attention! In a Minikube deployment we will
have neither LoadBalancer nor DNS to resolve anything
to *.example.com or a service URL like http://greeter.
default.example.com. To call a service, the host header
must be used with http/curl.

To be able to call a service, the request must go
through the ingress or gateway (in our case Istio). To
find out the address of the Istio gateway we have to use
in the http/curl call, the following command can be used:

IP_ADDRESS="$(minikube ip):$(kubectl get svc istio-ingressgateway
--namespace istio-system --output 'jsonpath={.spec.ports[?(@.port==80)]
 .nodePort}')"

The command receives the NodePort of the service is-
tio-ingressgateway in the namespace istio-system. If we
have the NodePort of the istio-ingressgateway, we can
call the greeter service via $IP_ADDRESS by passing the
host header with http/curl calls.

curl -H "Host:greeter.default.example.com" $IP_ADDRESS

Now you should get the same answer as with traditional
Kubernetes deployment (Hi greeter => ‘9861675f8845’
: 1). If you allow the deployment to be in idle mode for

about 90 seconds, the deployment will be terminated.
At the next call, the scheduled deployment is then reac-
tivated, and the request is answered.

Congratulations, you have successfully deployed and
called your first serverless application!

Kamesh Sampath is an author, consultant, and developer
advocate. He actively educates developers about Kuber-
netes/OpenShift, Service Mesh, and Serverless technolo-
gies. Throughout his nearly two-decade career, he has
assisted numerous companies in developing Java-based

solutions. Kamesh has been involved in the open-source community
for over ten years, actively contributing to a variety of projects such
as Knative, Minishift, Eclipse Che, fabric8, and others. He lives by the
motto "Learn more, do more, and share more!"

Links & References

[1] https://kubernetes.io/docs/tutorials/kubernetes-basics/

[2] https://kubernetes.io/docs/tasks/tools/install-minikube/

[3] https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-
kubectl-on-linux

[4] https://github.com/ahmetb/kubectx/blob/master/kubens/

[5] https://docs.microsoft.com/en-us/windows/wsl/install-win10

[6] https://istio.io

[7] https://gloo.solo.io

[8] https://knative.dev/docs/serving/

[9] https://quay.io/rhdevelopers/knative-tutorial-greeter

Doing Serverless on AWS with
Terraform for real
Anton Babenko | Betajob

More and more companies are
adopting serverless technologies as
the community is defining the best
practices, tools, and patterns. Compa-

nies using Terraform as their infrastructure as a
code tool are often required to reinvent the
wheel when they work with serverless. In the
talk, I will explain why managing serverless
applications with Terraform is a good idea and
how serverless.tf open-source project has started
as an organic response to the accidental com-
plexity of many existing tools used by serverless
developers. serverless.tf framework is open-
source and has been adopted by many compa-
nies using Terraform and AWS. I will demo a
complete serverless application (including
building and deploying it) using Terraform and
open-source components.

Listing 8
$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
greeter ExternalName istio-ingressgateway.
 istio-system.svc.cluster.local 114s
greeter-bn8cm ClusterIP 10.110.208.72 80/TCP 2m21s
greeter-bn8cm-metrics ClusterIP 10.100.237.125 9090/TCP 2m21s
greeter-bn8cm-priv ClusterIP 10.107.104.53 80/TCP 2m21s

Listing 9
kubectl get services.serving.knative.dev
NAME URL LATESTCREATED LATESTREADY
READY REASON
greeter http://greeter.default.example.com greeter-bn8cm greeter-
bn8cm Tru

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://example.com
http://greeter.default.example.com
http://greeter.default.example.com
http://greeter.default.example.com
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-linux
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-linux
https://github.com/ahmetb/kubectx/blob/master/kubens/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://istio.io
https://gloo.solo.io
https://knative.dev/docs/serving/
https://quay.io/rhdevelopers/knative-tutorial-greeter
https://serverless-architecture.io/serverless-development/serverless-aws-terraform/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
http://serverless.tf
http://serverless.tf
http://greeter.default.example.com

29

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

by Gilad David Maayan

AWS Lambda is a service for serverless computing, also
known as functions as a service (FaaS). It enables users
to run functions on-demand and invoke those functions
manually, via cloud service events or API. With Lamb-
da, users can access infrastructure on-demand with no
need to provision resources or maintain hardware. Ad-
ditionally, Lambda charges users for the computation
power used with no additional responsibilities.

Common use cases for Lambda include:

• Real-time data processing
• Extract, transform, load (ETL) processes
• Application, website, and Internet of Things (IoT)

backends

How Does AWS Lambda Work?
In Lambda, you create functions in the language of your
choice. The service natively supports the most common
languages and supplies a Runtime API for integrating
any non-native languages, frameworks, or libraries.
Once your function is ready, it is packaged along with
configuration and resource requirement information.
This package is then triggered as needed.

When Lambda functions are called, each runs in an in-
dividual container that operates on a multi-tenant cluster
of machines maintained by AWS. This enables you to run
multiple instances of a single function concurrently. It also
enables you to run several different functions at once.

When using Lambda functions, you are not respon-
sible for any infrastructure maintenance or manage-
ment. You have control over your individual functions
and triggers as well as allocated computational power,
bandwidth, and I/O.

AWS Lambda Challenges and Solutions
Lambda can provide an excellent solution for your ser-
verless needs but the service is not without its challen-
ges. Below are some of the most common challenges you
may face and some solutions you can apply.

Improving Cold Start Performance
Cold starts are caused when a new container instance
has to be created for a function to run. This happens
when there are long weight periods between function
executions, causing containers to be killed. Maintaining
active container instances for every possible function is
not resource-efficient for AWS so only those functions
that are active are kept live.

Improving Lambda cold start performance [1] is so-
mething you can do with the help of third-party tools
and a few modifications to your practices.

For example, writing functions in faster loading lan-
guages to reduce start times. However, mostly your best
option is to try to reduce the frequency of your cold
starts.

<span data-mce-type='bookmark' style='display: inline-block; width: 0px;
 overflow: hidden; line-height: 0;' class='mce_SELRES_start'>

Challenges and solutions

4 Tips for Solving
Lambda Perfor-
mance Issues
AWS Lambda provides serverless computing in the form of functions as a service
(FaaS). This means you can leverage on-demand infrastructure without the need
for provisioning and hardware maintenance. Overall, Lambda is a great service
for real-time data processing and backends. However, to achieve optimal perfor-
mance you need to do some troubleshooting. In this article, you will learn how to
improve cold start performance, implement efficient monitoring and logging, de-
bug functions, and avoid timeouts.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.20
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.20

30

WHITEPAPER Serverless Development

@ServerlessCon # ServerlessConserverless-architecture.io

One way to reduce frequency is by scheduling ping
events to your functions. This ensures that a function is
reactivated before hitting the idle limit (around 30 mi-
nutes). However, when doing this, be careful not to ping
your function too often. Doing so can delay function
execution times, negating the performance gained by
keeping functions alive.

Monitoring and Logging
Like all services and implementations, you need to be
able to monitor your Lambda functions to ensure that
you are getting the performance you need. Without
monitoring it is difficult or impossible to determine if
functions are triggered as you want. It is also a challen-
ge to determine if your resource requirements are pro-
perly defined. However, with Lambda, you cannot rely
on persistent logs or monitoring agents as you can with
instances.

Instead, you need to rely on the metrics and logs sent
to AWS CloudWatch. This service collects performance
and runtime data that you can access directly or ingest
with third-party solutions. You can also use the X-Ray
service for application tracing. In combination, these
services should help you identify most issues.

Debugging
If your functions are not operating as expected, debug-
ging isn’t always straightforward. For example, revie-
wing logs from CloudWatch can be challenging if you
need to view logs from multiple executions in a time-
ordered way. Additionally, the distributed nature of ser-
verless architectures and services can make it difficult to
identify where problems originate from.

One way to address these issues is to ensure that you
properly debug your functions before uploading to
Lambda. This helps ensure that it is not the function
itself that is the problem. It can also help you narrow
down if any associated services are the issue.

You can do this debugging with your default tools, or
you can use the debug mode that is available in the AWS
Serverless Application Model (SAM) CLI [2]. You are
also able to run SAM locally or as an integration with
your integrated development environment (IDE) via a
toolkit. Toolkits are available for JetBrains, PyCharm,
IntelliJ, and Visual Studio Code IDEs.

Avoiding Timeouts
Lambda timeout values determine how long a function
can run before it is terminated by the service. These va-
lues prevent functions from running longer than expec-
ted or indefinitely due to faulty logic or response issues.
The maximum time that Lambda functions can run is
five minutes. Anything longer than that defeats the pur-
pose and cost savings of FaaS.

In addition to issues related to function size or com-
plexity, there are several other timeouts that you may
encounter issues within Lambda functions. These inclu-
de:

• Amazon API gateway-related timeouts – has a limit
of 29 seconds for integration timeout. This limit
applies to all integrations, including Lambda, HTTP,
AWS services, and proxies. If you are frequently
seeing API related timeouts, you should check for
bottlenecks downstream.

• Low memory-related timeouts – when you create
functions you specify the resource requirements. If
the requirements you define are too low for your
actual needs, your functions may timeout. You can
check if low memory is the cause of your timeouts by
checking the MemorySetInMB and MemoryUsedIn-
MB values in your logs. If these values are frequently
close or the use-value is higher, consider increasing
your memory requirements defined in the function.

• Virtual private cloud (VPC)-related timeouts – att-
empting to run Lambda functions that connect to
external services in VPCs [3] should be avoided. This
is because requests cannot be routed through to the
Internet, resulting in no response. While there are
workarounds for this, it requires advanced networ-
king skills and is often not worth the additional effort
it takes to set connections up.

Conclusion
As a serverless service, Lambda does eliminate the need
to spend time and resources on provisioning and hard-
ware. However, it still requires work to troubleshoot
performance issues. Perhaps the most known issue is
Lambda cold start performance, which can be difficult
to optimize and troubleshoot, but it is possible to achie-
ve good results by pinging functions and integrating
with third parties.

You should also take care to avoid timeouts, which
may result due to function size limitations, API miscon-
figurations, low memory, and VPC. If you set up an ef-
ficient monitoring and logging cycle, you can keep track
of function performance issues and apply fixes on time.
But, since Lambda debugging can be complex, your
best course of action is perhaps prevention. So, make
sure your initial configurations are solid, and monitor
for specific issues. Monitoring for common issues could
save you a lot of time on investigating the source of the
problem.

Gilad David Maayan is a technology writer who has worked
with over 150 technology companies including SAP, Samsung
NEXT, NetApp and Imperva, producing technical and thought
leadership content that elucidates technical solutions for
developers and IT leadership.

Links & References

[1] https://lumigo.io/blog/this-is-all-you-need-to-know-about-
lambda-cold-starts/

[2] https://docs.aws.amazon.com/serverless-application-model/
latest/developerguide/what-is-sam.html

[3] https://www.techopedia.com/definition/26814/virtual-private-
cloud-vpc

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.20
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.20

31

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

by Sascha Möllering

Operating large platforms across an enterprise is a chal-
lenging task. Operations teams struggle to maintain
consistency and compliance for infrastructures deployed
by teams across the enterprise. Today's development
teams create apps consisting of dozens (or hundreds) of
individual components or microservices running in con-
tainer or serverless environments.

Each of these services is built to be independent and
modular, so they can be changed without affecting oth-
ers. One popular example is developing a complex web-
site that requires data from different backends. Each
individual development team works on one service at a
time, so they can make changes faster, with less opera-
tional risk.

However, it is important to recognize that there is a
lot of complexity behind each of these simple services.
For example, setting up a "simple" application (fig. 1)
that uses these microservices may require a long list of
other services and configurations, such as the choice of
computer implementation, DNS, load balancing, secu-
rity, CI/CD pipeline, monitoring, etc.

In addition to the platform teams, having develop-
ment teams implement the actual functionalities is typ-
ical for larger companies. Developers work with the
platform teams to define and create the infrastructure
configurations and package everything for deployment.
Every time the developers want to change something,
the entire cycle has to be repeated with the platform
team so they can maintain consistency and control over
the services. One common approach many large com-
panies take is building a shared service platform or an
internal developer platform. Platform operators can
define standards for security, software deployment,
monitoring, and networks which gives them more
control. Developers that use these platforms have a
customized self-service interface optimized for code

delivery. They can be more productive, rolling out soft-
ware faster.

Controlling applications, implementing guardrails,
and investing in developer productivity is nothing new.
The problem is that existing solutions don’t find the
right balance for companies with large development
teams or quickly growing application portfolios using
modern container and serverless architectures. There is
a complete and flexible Infrastructure as a Service, giv-
ing developers the greatest possible freedom. But it also
comes with a high level of responsibility. On the other
hand, there is also the compartmentalized Platform as a
Service. Here, the platform team makes all the decisions.
This makes it easier for developers to run code, but it’s
more difficult to innovate (Fig. 2).

Proton strikes a balance between operators' need for
control and developers' need for flexibility. With Pro-
ton, platform teams can provide developers an easy way

Fig. 1: A "simple" application

Application Management with AWS Proton – Part 1

In the Engine Room
Managing hundreds – or sometimes even thousands – of microservices with
constantly changing configurations for CI/CD chains is for many platform teams
nearly impossible. This article takes a closer look at AWS Proton, a fully man-
aged service for deploying container and serverless applications. The first part
of this series provides an overview of the service; the second part will take a
look at the technical details.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

32

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

to deploy code using containers and serverless technolo-
gies, while also leveraging the management tools, gov-
ernance, and visibility necessary for consistent standards
and best practices.

Platform teams use Proton to create a stack that de-
fines everything necessary for provisioning, deploying,
and monitoring a service. Developers log in to the Proton
console and use published Proton stacks to automate in-
frastructure provisioning and rapidly deploy application
code. Instead of spending hours setting up infrastruc-
ture for each development team, platform or operations
teams can centrally manage deployments without sacri-
ficing productivity. When part of the stack needs to be
updated, the platform team can use Proton to deploy up-
dates to microservices that have outdated configurations.

Templates are the heart of Proton. They help define
the stacks in which development teams will deploy their
services and include the ability to connect infrastructure-
as-code tools such as CloudFormation, Code Pipelines,
and Observability. The next instalment in this article
series will take a closer look at the different templates.

What does a typical Proton workflow look
like?
The diagram in Figure 3 shows a visualization of the
main AWS Proton concepts discussed in the previous

paragraph. It also provides an
overview of what makes a sim-
ple AWS Proton workflow.

1. An administrator creates
and registers an environ-
ment template in AWS Pro-
ton that defines the shared
resources.

2. AWS Proton deploys one
or more environments
based on a previously cre-

Fig. 3: Visual representation of a typical AWS Proton workflow

Fig. 2: Advantages and disadvantages of PaaS and IaaS

ated environment template.
3. An administrator creates and registers a service tem-

plate with AWS Proton that defines the associated
infrastructure, monitoring, and CI/CD resources, as
well as compatible environment templates.

4. A developer selects a registered service template and
provides a link to an existing source code repository.

5. AWS Proton provides the service with a CI/CD pipe-
line for the service instances.

6. AWS Proton deploys and manages the service and
service instances that the application runs on - based
on the selected service template. A service instance is
an instantiation of the selected service templates in
an environment for a single stage of a pipeline. For
example, this can be the production environment.

The operational view of things
Administrators – members of a platform team – create
environment and service templates. A service template
defines the common infrastructure used by multiple ap-
plications or resources. The service template defines the
type of infrastructure required to deploy and maintain
a single application or microservice in an environment.
An AWS Proton service is an instantiation of a service
template that typically includes several service instances
and a pipeline. An AWS Proton service instance is the

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

33

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

result of a service template in a particular environment.
Team members can specify which environment tem-
plates are compatible with a particular service template.

For AWS Proton, an environment represents a col-
lection of shared resources and policies where Proton
services are deployed. These can include any resources
that are shared among Proton service instances, such as
VPCs, clusters, shared load balancers, or API gateways.

An administrator can create an environment template
and then register it with AWS Proton. AWS Proton pro-
vides the environment as defined in the environment
template. One advantage is that Dev, Staging, and Prod
environments can be created using the same environment
template. For example, an environment named "devel-
opment" might contain a VPC with private subnets and
a restrictive access policy for all resources. The output of
an environment can be used as inputs to services.

Before services can be created and rolled out with a
service template, an environment must be provided in
AWS Proton. When a service template is created, a list of
compatible environment templates can be added. This lets
developers choose between different options for the envi-
ronments when creating a service from a service template.

Functionality for developers
Unlike other solutions, in Proton developers don’t need
to be experts in the underlying infrastructure. They do
not need to learn how to properly create and manage in-
frastructure as code templates like in CloudFormation.
That’s completely removed from the development process.

The only thing developers need to do is select a tem-
plate, enter the necessary parameters within their admin-
istrator’s guidelines, and deploy their service. Proton takes
care of the entire pipeline, providing the infrastructure and
code in the new environment. Once a developer deploys
their code with Proton, they will be able to see all running
services (Fig. 4) and can easily tell if updates are available
for the template. They can also easily view the status of
their builds. If they need to make changes or redeploy with
a new configuration, it’s all done right in Proton.

Security in Proton
With AWS Identity and Access Management (IAM),
you can create IAM users and control who has access to

which resources in an AWS account. IAM can be used
with AWS Proton to control what users can do with
AWS Proton. For example, you can control whether
teams can create service templates or service instances,
or if AWS Proton can make API calls to other services
on their behalf.

Administrators own and manage resources that AWS
Proton creates according to the environment and ser-
vice templates. Users can add IAM service roles to their
account, allowing AWS Proton to create resources on
their behalf. When a service role is specified, AWS Pro-
ton uses the credentials of that role.

Another important aspect is patching: AWS Proton
does not provide patches or updates for user-supplied
code. Each user is responsible for updating and apply-
ing patches to their own deployed code. This includes
the source code for services and applications running on
AWS Proton as well as code deployed in the service and
environment template bundles.

Users are responsible for updating and patching infra-
structure resources in their environments and services.
AWS Proton will not automatically update or patch
resources. Because of this, it’s important to review the
documentation for any architecture resources used. You
should understand their respective patching policies.

For privacy reasons, it is recommended to set up in-
dividual IAM users and protect AWS account log-in
information. This way, each user receives only the per-
missions they need to perform their tasks. The following
measures are also recommended to protect data from
unauthorized access:

• use multi-factor authentication (MFA) for each ac-
count

• Use SSL/TLS for communication with AWS resources
(TLS 1.2 or higher)

• Set up API and user activity logging with AWS
CloudTrail

• Leverage AWS encryption solutions with all standard
security controls in AWS services.

All customer data is encrypted by default with an AWS
Proton proprietary key in AWS Proton. When customer-
owned and managed KMS keys are provided, then all

Fig. 4: An overview of deployed services

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

34

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

customer data is encrypted using the customer-provided
key.

Instead of embedding sensitive information in AWS
CloudFormation templates and template bundles, it is
recommended to use dynamic references in stack tem-
plates. Dynamic references provide a powerful, compact
way to reference external values that are stored and man-
aged in other services, such as the AWS Systems Man-
ager Parameter Store or AWS Secrets Manager. When a
dynamic reference is used, CloudFormation retrieves the
value of the specified reference on-demand during stack
and change set operations. It passes the value to the cor-
responding resource. However, CloudFormation never
stores the actual reference value. AWS Secrets Manager
helps securely encrypt, store, and retrieve credentials for
databases and other services. The AWS Systems Man-
ager Parameter Store is ideal for configuration data that
needs to be stored securely in a hierarchical form.

Monitoring in AWS Proton
Monitoring is an important part of maintaining reliability,
availability, and performance in AWS Proton. Right now,
AWS Proton does not integrate with Amazon Cloud-

Watch Logs or AWS Trusted Advisor. Administrators can
configure and use CloudWatch to monitor other AWS
services, which can be defined in the service and environ-
ment templates. Here is a list of monitoring tools that are
available to monitor instances running in AWS Proton:

• Amazon CloudWatch monitors AWS resources and
applications running in AWS in real time. It can be
used to collect and track metrics, create custom dash-
boards, and set alarms. The alarms can be used as a
notification, or as an automated action when a par-
ticular metric reaches a specific threshold. A popular
example is the CPU usage or other metrics of Ama-
zon EC2 instances. If they are needed, new instances
start automatically.

• Amazon CloudWatch Logs provides monitoring,
storage, and access to log files from Amazon EC2
Instances, CloudTrail, and other sources. Cloud-
Watch Logs can monitor information in the log files
and send notifications when certain thresholds are
reached.

• AWS CloudTrail captures API calls and associated
events made by or on behalf of an AWS account and
provides the log files in a specified Amazon S3 buck-
et. This information can be used to identify which
users and accounts made AWS calls. You can view
the source IP address each call was made from, and
when the calls were made.

• Amazon EventBridge is a serverless event bus service
that makes it easy to connect applications to data
from a variety of sources. EventBridge delivers a
stream of real-time data from proprietary applica-
tions, software-as-a-service (SaaS) applications, and
AWS services. It routes that data to destinations such
as Lambda. For example, events that occur in services
can be monitored and event-driven architectures can
be built with this basic infrastructure.

Conclusion
AWS Proton is a new service for deploying container-
based and serverless applications. It implements a popu-
lar setup used by large companies; administrators build
a shared service platform that developers can use to roll
out their applications. Administrators define templates
that developers can use as a basis. Developers are only
responsible for configuring the services. The actual im-
plementation of the underlying platform is abstracted
from them, which has the positive effect of allowing
development teams to focus entirely on developing
business-critical applications. AWS Proton supports
a templating mechanism for developing custom tem-
plates. In the next article, we will take a closer look at
the structure of these templates.

Sascha Möllering works as Solutions Architect Manager at
Amazon Web Services EMEA SARL. His interests are in the
areas of automation, infrastructure as code, distributed
computing, containers, serverless, and the JVM.

Advanced Serverless Workshop
Michael Dowden | LegalZoom, Chad Green |
Glennis Solutions, Bryan Hogan | AWS

Have you been
doing serverless
for awhile, but
don’t feel like

you’re getting the most out of it? This interactive
workshop will give you the chance to interact
with experienced serverless professionals and
get three different perspectives on how you can
level up your serverless architecture.

• Learn new approaches and design patterns
• Hear stories from the trenches about what

worked (and what didn’t)
• Gain perspective on aspects such as cost, per-

formance, scalability, and resilience
• Includes examples covering AWS Lambda,

Azure Function, and Google Functions

This four-part workshop is designed for experi-
enced serverless developers and architects who
want to deepen their knowledge, learn excit-
ing new aspects of serverless technology and
network with other serverless experts. Some per-
spective on the major platforms will be provided,
but this workshop is intended for all practitioners
regardless of their current technology stack.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-architecture-design/advanced-serverless-workshop/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

35

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

by Sascha Möllering

AWS Proton is a fully managed service for rolling out
container and serverless applications. Platform engi-
neering teams can use AWS Proton to connect and coor-
dinate all of the various tools required for infrastructure
provisioning, code deployment, monitoring, and up-
dates. Proton resolves this by giving platform teams the
tools they need to manage these complex processes and
enforce consistent standards, while making it easier for
developers to deploy code with containers and serverless
technologies (Figure 1).

One typical pattern seen in large companies is having
development teams that implement the actual functionali-
ties, in addition to the platform teams. Developers work
with platform teams to de-
fine and build infrastructure
configurations and package
all of the necessary files for
deployment. Every time the
developers want to change
something, the full cycle needs
to be repeated with the plat-
form team so they can main-
tain consistency and control
over all services.

A popular approach used
in large companies is build-
ing a shared service platform
or an internal developer plat-
form. Platform teams use
AWS Proton to create a stack
defining everything they need
to provision, deploy, and
monitor a service. Develop-
ers log into the AWS Proton

Console and use published AWS Proton Stacks to au-
tomate infrastructure provisioning and quickly deploy
their application code. Instead of spending hours setting
up infrastructure for each development team, platform
or operations teams can manage deployments centrally.
When part of the stack needs to be updated, the platform
team uses AWS Proton to deploy updates to existing mi-
croservices that could have outdated configurations.

What are template bundles?
AWS Proton infrastructure template bundles can be cre-
ated for automatic application deployment. Template
bundles contain all of the information that AWS Proton
needs to provision and manage the version-controlled
Infrastructure as Code resources in an automatic, trans-

Fig. 1: The AWS Proton workflow

Application Management with AWS Proton - Part 2

AWS Proton –
Technical Details
Managing hundreds, or sometimes thousands of microservices with constantly chang-
ing configurations for CI/CD chains is a nearly impossible task for many platform teams.
The following article takes a closer look at AWS Proton, a fully managed service for roll-
ing out container and serverless applications. The first part of this article series was on
application management with AWS Proton, and provided an initial overview of the ser-
vice and the different views of infrastructure and application in the context of Proton.
In the second part, we will focus more on technical aspects, especially templates.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

36

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

parent, and repeatable manner. After a template bundle
is created, it becomes a part of the versioned AWS Pro-
ton template library.

Administrators can be provided with all of the infor-
mation that AWS Proton needs in the following YAML
formatted files, which make up a template bundle:

• Infrastructure template files with a manifest file list-
ing the template files

• A schema file that defines the parameters that can be
used and shared by the template files and the resourc-
es which they provide

AWS Proton manages and provisions infrastructure re-
sources across environments, services, service instances,
and optional CI/CD service pipelines. Environments
represent a network of shared resources that administra-
tors or developers use to deploy service instances. Ser-
vice instances run the developer's applications. When
developers select a versioned service template bundle
from the library, AWS Proton uses it to deploy and man-
age the applications.

The diagram in Figure 2 shows a process for creating
a template bundle that can be used to define infrastruc-
ture resources for an environment or service.

Customization parameters are parameters that can be
added to infrastructure templates in order to make them
flexible and reusable. In a service infrastructure template
file, a namespace must be attached to a customization pa-
rameter in order to link it with an AWS Proton resource.
You can only specify values for these parameters when
creating the service. The following list contains examples
of customization parameters for some typical use cases:

• Port
• Task Size

• Image
• Required number
• Dockerfile
• Unit test

After these parameters are identified, you must define a
schema to serve as the interface for customization pa-
rameters between AWS Proton and the infrastructure
template files. The schema is then used when defining
parameters while creating the infrastructure’s template.

Administrators or developers specify values for cus-
tomization parameters when they use a service template
to create a service. When they use the console to create a
service, AWS Proton automatically provides a schema-
based form to fill out. When the CLI is used, a speci-
fication must be provided that contains values for the
customization parameters. Resource-based parameters
are linked with AWS Proton resources. For example, if
a resource defined in one template file needs to be refer-
enced in another template file, a namespace can simply
be added, linking it to an AWS Proton resource.

The template bundle’s main components are template
files for the infrastructure or configuration files that de-
fine the infrastructure resources and properties to be pro-
vided. AWS CloudFormation and other Infrastructure as
Code engines use these types of files to provision infra-
structure resources. Besides CloudFormation, work for
supporting HashiCorp Terraform is currently underway.

Listing 1 shows an example of an environment tem-
plate (cloudformation.yaml).

Using schema files for environments and
services
When administrators use OpenAPI Data Models [1] to
define a parameter schema file for a template bundle,
AWS Proton can validate parameter value inputs against

Fig. 2: Schematic
representation of
the template bundle
structure

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

37

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

Listing 1
AWSTemplateFormatVersion: '2010-09-09'
Description: AWS Fargate cluster running containers in a public subnet.
Only supports public facing load balancer, and public service discovery
namespaces.
Parameters: # customization parameters
 VpcCIDR: # customization parameter
 Description: CIDR for VPC
 Type: String
 Default: "10.0.0.0/16"
 SubnetOneCIDR: # customization parameter
 Description: CIDR for SubnetOne
 Type: String
 Default: "10.0.0.0/24"
 SubnetTwoCIDR: # customization parameters
 Description: CIDR for SubnetTwo
 Type: String
 Default: "10.0.1.0/24"
Resources:
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 EnableDnsSupport: true
 EnableDnsHostnames: true
 CidrBlock:
 Ref: 'VpcCIDR'

 # Two public subnets, where containers will have public IP addresses
 PublicSubnetOne:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone:
 Fn::Select:
 - 0
 - Fn::GetAZs: {Ref: 'AWS::Region'}
 VpcId: !Ref 'VPC'
 CidrBlock:
 Ref: 'SubnetOneCIDR'
 MapPublicIpOnLaunch: true

 PublicSubnetTwo:
 Type: AWS::EC2::Subnet
 Properties:
 AvailabilityZone:
 Fn::Select:
 - 1
 - Fn::GetAZs: {Ref: 'AWS::Region'}
 VpcId: !Ref 'VPC'
 CidrBlock:
 Ref: 'SubnetTwoCIDR'
 MapPublicIpOnLaunch: true

 # Setup networking resources for the public subnets. Containers
 # in the public subnets have public IP addresses and the routing table
 # sends network traffic via the internet gateway.
 InternetGateway:
 Type: AWS::EC2::InternetGateway

 GatewayAttachement:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 VpcId: !Ref 'VPC'
 InternetGatewayId: !Ref 'InternetGateway'
 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref 'VPC'
 PublicRoute:
 Type: AWS::EC2::Route
 DependsOn: GatewayAttachement
 Properties:
 RouteTableId: !Ref 'PublicRouteTable'
 DestinationCidrBlock: '0.0.0.0/0'
 GatewayId: !Ref 'InternetGateway'
 PublicSubnetOneRouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 SubnetId: !Ref PublicSubnetOne
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetTwoRouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 SubnetId: !Ref PublicSubnetTwo
 RouteTableId: !Ref PublicRouteTable

 # ECS Resources
 ECSCluster:
 Type: AWS::ECS::Cluster

 # A security group for the containers we will run in Fargate.
 # Rules are added to this security group based on what ingress you
 # add for the cluster.
 ContainerSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Access to the Fargate containers
 VpcId: !Ref 'VPC'

 # This is a role which is used by the ECS tasks themselves.
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: Allow
 Principal:
 Service: [ecs-tasks.amazonaws.com]
 Action: ['sts:AssumeRole']
 Path: /
 ManagedPolicyArns:
 - 'arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy'
...

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

38

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

the requirements that have been defined in the schema.
Your schema must follow the data models (Schemas)
section of the OpenAPI in YAML format. It must also
be a part of your environment schema bundle. Listing
2 defines an environment input type with a description
and input properties (sample service schema file for an
environment template).

Listing 3 shows an example of a service schema file for
a service that includes an AWS Proton service pipeline.

After the environment, service infrastructure template
files and the associated schema files have been prepared,
they must be organized into directories. The directory
structure of the service template bundles is defined as
seen in Listing 4.

Listing 3
schema: # required
 format: # required
 openapi: "3.0.0" # required
 # required defined by administrator
 service_input_type: "LoadBalancedServiceInput"
 # only include if including AWS Proton service pipeline, defined by
 # administrator
 pipeline_input_type: "PipelineInputs"

 types: # required
 # defined by administrator
 LoadBalancedServiceInput:
 type: object
 description: "Input properties for a loadbalanced Fargate service"
 properties:
 port: # parameter
 type: number
 description: "The port to route traffic to"
 default: 80
 minimum: 0
 maximum: 65535
 desired_count: # parameter
 type: number
 description: "The default number of Fargate tasks you want running"
 default: 1
 minimum: 1
 task_size: # parameter
 type: string
 description: "The size of the task you want to run"
 enum: ["x-small", "small", "medium", "large", "x-large"]
 default: "x-small"

 image: # parameter
 type: string
 description: "The name/url of the container image"
 default: "public.ecr.aws/z9d2n7e1/nginx:1.19.5"
 minLength: 1
 maxLength: 200
 unique_name: # parameter
 type: string
 description: "The unique name of your service identifier. This will be
 used to name your log group, task definition and ECS service"
 minLength: 1
 maxLength: 100
 required:
 - unique_name
 # defined by administrator
 PipelineInputs:
 type: object
 description: "Pipeline input properties"
 properties:
 dockerfile: # parameter
 type: string
 description: "The location of the Dockerfile to build"
 default: "Dockerfile"
 minLength: 1
 maxLength: 100
 unit_test_command: # parameter
 type: string
 description: "The command to run to unit test the application code"
 default: "echo 'add your unit test command here'"
 minLength: 1
 maxLength: 200

Listing 2
schema: # required
 format: # required
 openapi: "3.0.0" # required
 # required defined by administrator
 environment_input_type: "PublicEnvironmentInput"
 types: # required
 # defined by administrator
 PublicEnvironmentInput:
 type: object
 description: "Input properties for my environment"
 properties:
 vpc_cidr: # parameter
 type: string

 description: "This CIDR range for your VPC"
 default: 10.0.0.0/16
 pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24))
 subnet_one_cidr: # parameter
 type: string
 description: "The CIDR range for subnet one"
 default: 10.0.0.0/2
 pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24))
 subnet_two_cidr: # parameter
 type: string
 description: "The CIDR range for subnet two"
 default: 10.0.1.0/24
 pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24))

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

39

WHITEPAPER Serverless Operations & Security

@ServerlessCon # ServerlessConserverless-architecture.io

Additionally, a manifest file must be created. The
manifest file lists the infrastructure files and has to ad-
here to the format and content as shown in Listing 5.

After the directories and manifest files are set up for the
environment or service template bundle, the directories
must be compressed into a tar ball and uploaded to an
Amazon S3 bucket where AWS Proton can retrieve them.
AWS Proton checks templates for the correct file format,
but it does not check for dependencies and logic errors.
For example, let us assume that the creation of an Amazon
S3 Bucket has been specified in an AWS CloudFormation
template file as a part of the service or environment tem-
plates. A service is created based on these templates. Then,
let’s assume that the service will be deleted at some point.
When the specified S3 bucket is not empty and the Cloud-
Formation template does not mark it as Retain in the De-
letionPolicy, then AWS Proton fails to delete the service.

Under [2], you will find a repository containing a cu-
rated list of AWS Proton templates. Currently, there are
three different templates.

• AWS Proton Sample Load-Balanced Web Service and
microservices are each based on Amazon ECS and
AWS Fargate: This directory contains sample templates
for AWS Proton environments and services for an
Amazon ECS Service with Load Balancing running on
AWS Fargate, as well as sample specifications for creat-
ing Proton environments and services using templates.
The environment template contains an ECS cluster and
a VPC with two public subnets. The service templates
contain all of the resources required to create an ECS
Fargate service behind a load balancer in this environ-
ment, as well as sample specifications for creating Pro-
ton environments and services using the templates.

• AWS Proton Sample Multi-Service: This directory
contains sample templates that show how AWS
Proton environments can be used to create shared
resources for multiple services. The environment
template contains a simple Amazon DynamoDB table
and an S3 Bucket. A service template creates a sim-
ple CRUD API service supported by AWS Lambda
functions and an API Gateway, and includes an AWS
CodePipeline for Continuous Delivery. The second
service template creates a data processing service
that consumes data from an API, pushes that data
into a Kinesis Stream. It is then consumed by another
Lambda function and pushes the data into a firehose,
which ends up in the S3 Bucket configured by the
environment template.

Listing 4
 /schema
 schema.yaml
 /infrastructure
 manifest.yaml
 cloudformation.yaml

Listing 5
 infrastructure:
 templates:
 - file: "cloudformation.yaml"
 rendering_engine: jinja
 template_language: cloudformation

AWS Proton has been generally available since June
2021 and like other container services, it has a public
roadmap [3]. In the roadmap, you can see which func-
tionalities were released recently, what will be released
soon, what the service team is currently working on,
and what is currently being researched. For example,
the service team is currently working on supporting
HashiCorp Terraform [4] so that the infrastructure can
also be built by Terraform scripts.

Conclusion
AWS Proton is a new service for deploying container-
based and serverless applications that implements a
popular set-up used by large companies, where admin-
istrators build a shared service platform that developers
can use to roll out their applications. Administrators de-
fine templates that developers can use as a basis. These
templates provide a high degree of flexibility in order to
define the desired infrastructure.

Sascha Möllering works as a Solutions Architect at Amazon
Web Services Germany GmbH. His interests lie in the areas
of automation, infrastructure as code, distributed comput-
ing, containers and JVM.

Links & References

[1] https://swagger.io/docs/specification/data-models/

[2] https://github.com/aws-samples/aws-proton-sample-
templates

[3] https://github.com/aws/aws-proton-public-roadmap/
projects/1

[4] https://github.com/aws/aws-proton-public-roadmap/issues/1

Rust + Wasm – a Dream Team
for Serverless
Rainer Stropek | software architects

Wasm ended the monopoly of JavaS-
cript in the browser and now Wasm is
reaching the server. Wasm modules
promise to be smaller, faster, and

equally secure compared to traditional contain-
ers, and Rust is the leading language when it
comes to Wasm. In this session, Rainer Stropek
will start with a brief introduction to Wasm based
on samples in Rust. You will see different Wasm
runtimes like WasmEdge and Wasmtime in
action. Based on that, Rainer will demonstrate
examples of how Wasm is used in public Edge
Cloud services. You do not need to be a Rust
specialist to follow the session. Practical program-
ming experience is recommended, however.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/serverless-development/rust-wasm-serverless//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

40

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

by Michael Hofmann

A development team developing for the cloud faces a
slew of new challenges, ranging from an adapted de-
velopment process to new methodologies and frame-
works. However, a shift in task distribution is also
being discussed. Many projects are still deciding which
new duties the developers will take on. Is it better if the-
se additional tasks are handled by the operations team?
Finally, new tools to support the additional work steps
in the development process must be considered.

The topic is extensive, and in some areas, the DevOps
community is still in the early stages or in the midst of
change. As a result, highlighting all of the important as-
pects is challenging. With this in mind,
we intend to choose a few topics and
examine them in greater depth. Some of
them will be discussed in greater detail,
while others will be mentioned briefly.

Development process
When developing applications for the
cloud, developers must not only deal
with new architectural approaches but
also with new infrastructure require-
ments. To meet these requirements, new
substeps in the development process are
required. The application must be able
to run in a Docker container, which is
operated in an orchestration environ-

ment such as Kubernetes. As a result, the traditional
development process is supplemented with the subs-
teps "Docker Build and Push" and "Deploy to (local)
K8S." Figure 1 depicts the new development process for
a cloud-native application.

This extended development process invariably requi-
res the use of new tools. Be it because the old tools no
longer fit, or because there are new substeps in the pro-
cess that were not previously required. To continue de-
veloping efficiently, the goal should always be to achieve
the highest level of automation possible. We will come
back to the topic of tool selection later. "Deploy to (lo-
cal) K8S" will also be covered in greater detail in one of
the following sections.

Fig. 1: Cloud-native development process

Detours to happiness

Dev(Ops) Experience
Cloud-Native
The growing market share of cloud systems clearly shows that an increasing number
of software systems are being operated in the cloud. As a prerequisite, more and
more developments are cloud-native. The term Dev(Ops) Experience Cloud-Native
refers to "development for the cloud" and "deployment in the cloud." Sometimes
it's difficult to tell whether something is more Dev or more Ops, which is why we talk
about the Dev(Ops) Experience.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/

41

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

DevOps task distribution
In addition to the new development process, there are
also new tasks. In the past, for example, you would
hand over an installation instruction in prose to your
Ops colleagues. Based on this description, they would
try to deploy and operate the application. As a result of
this approach, the outcome was often faulty because the
prose descriptions were misunderstood or formulated in
a misleading way.

Fortunately, these mistakes taught us valuable less-
ons. Declarative manifest files, such as those used in Ku-
bernetes, clearly define what the application needs from
the runtime environment to function properly. Misun-
derstandings are ruled out here.

This new approach inevitably leads to a new task.
The question is, who in the project/company is in char-
ge of creating these manifest files? On the one hand, it
is clearly the developer's responsibility. He understands
what resources (database connections, environment
variables, CPU and memory consumption, etc.) his ap-
plication needs. On the other hand, these manifest files
include many aspects that come from the operating plat-
form (autoscaling, storage, load balancing, networking,
etc.). This requires knowledge that was previously re-
served for Ops colleagues but is now frequently found
in so-called cloud platform teams. These manifest files
must incorporate knowledge from both the Dev and
Ops worlds. As a result, intense discussions are taking
place in projects/companies about how to best distribute
tasks.

The approaches to the solution here range from "the
Ops team only provides Kubernetes as a platform," "the
Ops team develops base manifest files to support the Dev
team," and "the DevOps team is solely responsible and
accountable for the application." In any case, working
shoulder to shoulder with the Ops colleagues/platform
team to find an individual and workable approach is
required. This is a good thing because it aligns with the
DevOps philosophy.

From a technical standpoint, Helm [1], as a so-called
package manager, provides the ability to create base
charts. Base manifest files are made available, which
can then be integrated and parameterized into the user's
own Helm charts. As a result, a multi-level hierarchical
chart-in-chart structure is created. The art is in deter-
mining the best approach for the following questions:
What should be predefined in the base chart, what can
be parameterized, and what is up to the base chart user?
Which base chart structure is best suited to our project/
business?

If the creation of the respective base charts is organi-
sed as an InnerSource project, a suitable set of charts is
usually obtained very quickly, greatly simplifying life for
the development teams.

Cloud provider dependencies
Each of the well-known cloud providers (AWS, Azure,
Google, etc.) has different X-as-a-Service offerings in its

programme. That is, various cloud computing services
are made available to make it easier to get started, but
also to deal with the cloud. The more X-as-a-Service ser-
vices are used, the less one has to deal with them alone.
This shifts the distribution of previously outlined tasks
further in the direction of the cloud provider, relieving
the Ops team of such tasks.

These offers seem so appealing at first glance, but you
must be aware that you become heavily dependent on
the cloud provider. Because the service offerings are
highly proprietary, switching cloud providers is dif-
ficult.

To address this issue, so-called multi-cloud strategies
are being implemented more frequently. For the same
reason, there are now legal requirements and guideli-
nes that enable users to switch cloud providers at any
time.

Twelve-Factor App [2]
The "Twelve-Factor App" method, developed years
ago, offers useful recommendations on what should be
considered when creating a software-as-a-service appli-
cation. The following principles form the basis for the
twelve factors:

• declarative formats for automated installation
• unique contract with the operating system for maxi-

mum portability

Serverless Rust: Comparing the
Performance of Rust with Go, Java,
and Python in AWS Lambda
Functions
Cliff Crosland | Scanner.dev

Given the extremely fast startup time
and low memory usage of Rust
binaries, using Rust in a serverless
environment like AWS Lambdas is

appealing. Rust launches extremely quickly from
a cold start and uses little memory compared to
other languages. Our team wanted to use
Lambda functions to scan through terabytes of
data in S3 extremely quickly, and we needed to
choose the fastest language for the job. In this
talk, I’ll show how we compared Rust’s perfor-
mance in AWS Lambda functions against other
languages, specifically Go, Java, and Python. I’ll
also cover some surprising ways you can tune
Lambda performance, like how increasing
lambda memory allocation will actually increase
network bandwidth to S3, and more.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://serverless-architecture.io/serverless-development/serverless-rust-comparison-aws-lambda-functions//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

42

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

• deployment in modern cloud platforms
• minimal difference between development and pro-

duction environments for continuous deployment
• flexibility for changes in tooling, architecture, or

deployment

Twelve concrete factors with very clear instructions
for action were derived from these principles. Fol-
lowing these instructions results in an application
that meets the requirements of cloud systems. Listing
and describing these twelve factors would be beyond
the scope of this article, so every development team
should read up on them and incorporate them into
their own projects.

One particular factor, number ten, "Dev/prod pari-
ty," will be discussed in greater depth later in the article.

Developer frameworks and JVM
Aside from operations, there has been a lot of activity
in the cloud environment on the developer side as well.
Spring began developing new frameworks for cloud
development very early on. Unfortunately, new frame-
works for Java EE and Jakarta EE developers took a
little longer to emerge. It was not until the creation of
MicroProfile [3] that Jakarta EE applications could be
developed for the cloud.

Unfortunately, startup times for Spring and Micro-
Profile applications are extremely long. On the other
hand, one significant advantage of the cloud is that
peak loads can be handled very elegantly through au-
toscaling. In JVM-based systems, new technologies
have emerged to mitigate this disadvantage. As a re-
sult, Oracle has started work on GraalVM [4]. At its

core is a compiler that converts Java code to fast exe-
cutable and compact binary code. Quarkus [5] has also
joined the fight against lengthy startup times. Quarkus
describes itself as a Kubernetes-native Java stack that
is tailor-made for OpenJDK, HotSpot, and GraalVM.
Quarkus is also a MicroProfile-certified application ser-
ver that supports native compilation by GraalVM to
produce high-performance and resource-efficient appli-
cation code.

Tools
If you are at the beginning of your journey into cloud de-
velopment or want an up-to-date overview of the tools
available, the CNCF Landscape [6] is a good place to
start. Particularly under the headings "Application De-
finition & Image Build" and "Continuous Integration
& Delivery," you will find a large selection of useful and
necessary Dev(Ops) tools. If you choose one of the tools
listed here, there is a good chance that it will still be
up-to-date and available tomorrow. After all, you don't
want to be constantly changing a well-established and
functional toolchain.

In addition to so-called experience, when selecting
tools, you should consider how the tools can be integ-
rated into the existing development process. Are stan-
dardised transfer interfaces in the direction of upstream
or downstream tools supported, or is integration into
the overall process rather awkward? After all, despite all
the risk protection provided by the CNCF Landscape,
situations may arise in which one tool must be replaced
by another. This may be because the tool has reached its
end of life or because a better tool has become available
to replace it.

Over the last few years, companies' tool selection po-
licies have changed significantly. Previously, there were
always rules coming from above dictating which tools
developers could use. Fortunately, these rules are beco-
ming less common. After all, the developer should be
the one to decide which tools he/she will use on a daily
basis. In the end, the so-called tool Darwinism prevails.
Among developers, word quickly spreads about which
tool truly does a good job. In the end, only one tool
usually becomes the standard within a project or a com-
pany. This is not to say that a company's specifications
are completely off the table.

As in the past, there are still tool manufacturers that
offer commercial tools for this purpose. Typically, open-
source projects are the basis for this. On top of this,
additional special functions are offered commercially. In
most cases, the basic functions provided by open-source
projects are sufficient. Therefore, each team must decide
whether these commercial offers are worthwhile or whe-
ther to start with open source.

Tools in the development process
From a Dev(Ops) Experience perspective, the "Applica-
tion Definition & Image Build" and "Continuous Integ-
ration & Delivery" sections contain the most important

Workshop: Level Up Your Server-
less Game – Getting started the
Art of Writing and Deploying
Serverless Applications
Lena Fuhrimann | bespinian

Play through our ten levels of writing
and deploying serverless applications.
Each level represents a new challenge
that teams who decide to go server-

less usually face. The goal of this workshop is that
you can work your way through these challenges
and caveats so that you don’t have to face them
in your own applications anymore. By doing so,
you’ll apply best practices, debug and harden
your serverless applications based on AWS
Lambda and other serverless technologies.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://serverless-architecture.io/serverless-development/writing-deployment-serverless-applications//?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

43

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

tools. Those are the tools that a developer is most likely
to use. But, before we get into the tools, let's take ano-
ther look at the development process.

In short, the new development process revolves
around the following challenge: "How do I get my
code to the cloud as quickly as possible?" Because
the additional steps extend the roundtrip time, a fast
roundtrip is now even more important than before.
Erroneous intermediate results, which can occur more
often due to the more extensive process, also increase
the roundtrip.

The developer typically creates the artefacts requi-
red for this (Docker image, manifest files). Therefore, it
stands to reason that these artefacts should be created
and tested on the local development machine. The deve-
loper needs to be able to verify that his Helm Charts are
generating the correct manifest files or that the Docker
image meets the required specifications.

 If these steps only take place on the CI server, the
turnaround time is increased and efficiency is not parti-
cularly high. The silver bullet is to use the same tools on
the development machine and on the CI server.

The creation of the Docker image is a new required
step in the development process. The simplest way to
accomplish this is to use a corresponding Gradle or Ma-
ven plug-in. But proceed with caution: A major plug-in
die-off has occurred in recent years. Only a few of the
previously more than ten available plug-ins remain. The
best known are docker-maven-plugin [8] and jib [9].
Gradle appears to be in a similar state: Docker Gradle
Plugin by Palantir [10], Benjamin Muschko [11], or jib
[12] are the last available alternatives.

On the other hand, some tools, known as stand-alone
tools, can take over the creation of the Docker image.
In addition to Docker [13], these include Kaniko [14]
and Buildah [15], to name a few examples. However,
this immediately raises the question of how to run them
on the developer machine in an automated manner after
the application has been built. This is less difficult to
implement on the CI server.

CI/CD-Server
New CI/CD servers have emerged in recent years, ad-
apted to the cloud's new capabilities or requirements.
The CNCF Landscape pool includes Argo, Flux, Keptn,
JenkinsX, and Tekton, to name a few.

Testing and debugging
Testing and debugging of an application can be perfor-
med locally to a large extent. However, there is a clear
need to test and possibly debug the application in the
target environment, i.e. the Kubernetes cluster. There
are some differences between the local development en-
vironment and the cluster that can cause the application
to behave differently, such as:

Fig. 2: Swap deploy-
ment

Multi-Mesh – the next logical Step
in Multi-cloud Environments
Michael Hofmann (Hofmann IT-Consulting)

Multi-cloud is increasingly being made as
a strategic business decision to avoid
cloud lock-in. Changing from one cloud
provider to another also leads to a
multi-cloud situation, at least in the

transitional period. But there can also be other
reasons for a multi-cloud strategy, such as different
security zones, multi-tenancy, availability, etc. In a
multi-cloud environment, cross-cluster communica-
tion should be encrypted, take place locally if
possible, and be implemented with the appropriate
resilience patterns. In this session, the possibilities for
building a multi-mesh will be presented with the help
of Istio, as an extension to Kubernetes. The topology
and functionalities of the multi-mesh (cross cluster
mTLS, locality load balancing, resilience) are ex-
plained in detail with concrete examples.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://devopscon.io/cloud-platforms-serverless/multi-mesh-cloud/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

44

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

• operating system
• JDK version
• environment variables, volume mounts, DNS...
• backing service with cluster configuration (local sing-

le server configuration only)

When the application behaves differently in the cluster
than in the local test, determining the cause becomes
costly. Fortunately, there are a number of approaches
that can help with this. They are as follows:

• synchronous deployment
• source reload
• swap deployment

These three approaches are discussed further below.

Synchronous deployment
The first approach is synchronous deployment. Skaffold
[16], for example, synchronises the code locally and in
the cluster. It starts the necessary build steps in the back-
ground as soon as the code changes locally, and it also
handles the deployment in the cluster. Long-running
tests can be temporarily deactivated during the build.
As a result, the new code state is deployed in the clus-
ter in a matter of seconds, and a test can immediately
determine whether the error has been fixed. This tool
is extremely useful, especially during the initial phase
when developers have to take care of the Docker image
or Kubernetes manifest files.

Source reload
The source reload is another option for a quick pass
from compile to deployment. Here, new locally com-
piled class files are uploaded to the running Kubernetes
pod. The application server in the pod swaps out the-

se class files on the fly without restarting the server. The
new code is executed on the next test call, which should
hopefully fix the bug.

There are a few prerequisites for this. First, the appli-
cation server must provide this functionality, which is
almost always the case with the most widely used ser-
vers (Tomcat, OpenLiberty, etc.). A quick look through
the documentation should confirm this and explain the
required settings. You will, however, require a tool that
allows you to transfer class files. This is where Ksync
[17] comes into play. Ksync synchronises the local file
system, which contains the class files after compilation,
in the running Kubernetes pod. After Ksync has placed
the new files in the pod, they are loaded from the ap-
plication server. The entire process is very fast because
it is usually just a few small files that can be copied to
the cluster without taking much time. The whole thing
would also work with a WAR file, but it would be a little
slower due to the additional build step and the size of
the WAR file.

The same approach is used by Quarkus' so-called live
coding. A properly configured app server exchanges re-
ceived class files on the fly without restarting. Quarkus
also provides the necessary local sync process. Quarkus
thus supports a source reload without the use of addi-
tional tools.

A code replacement without restart has the advantage
of not breaking an existing remote debug connection.
This gives the developer an experience that is nearly
identical to local development, even when debugging.

Swap deployment
The third approach goes one step further. A bidirec-
tional proxy replaces the Kubernetes pod in which the
application is running. This proxy is configured to for-
ward requests to the locally running instance of the
application. The local network on the development
machine is also changed. As a result, the responses
can be routed back to the Kubernetes cluster. T The
proxy receives them and forwards them accordingly.
The diagram in Figure 2 is intended to illustrate this
situation.

As an additional feature – aside from modifying the
local network settings – the volumes and environment
variables from the Kubernetes pod are also made availa-
ble for the local environment. Telepresence [18] and the
Visual Studio code plug-in Bridge to Kubernetes [19] are
suitable tools for swap deployment.

Another consequence of this approach needs to be
mentioned. Replacing the running pod with the proxy
is transparent to all developers with access to the clus-
ter. That is, when another developer sends a request to
this (replaced) pod, it also ends up in their own local
development environment. Meanwhile, both tools can
compensate for this behaviour by running the proxy
alongside the original pod. This way, requests from
fellow developers are no longer routed to the local in-
stance. Unfortunately, telepresence requires a commer-

How Uber manages one hundred
thousand Databases
Egor Grishechko (Uber)

At Uber, the Stateful Platform deploys
and runs millions of containers on more
than 70 000 hosts, managing exabytes
of data across on-prem and cloud zones.
The Odin platform allows teams to run

database engines and other stateful systems at
planet scale, with high availability, low cost, and a
high degree of automation. Uber uses MySQL,
Schemaless, Redis, ZooKeeper, Kafka, HDFS, YARN,
and many other technologies. During the talk, I’ll
show how and why we successfully host such a large
number of containers. Also, I’ll put light on a few
significant problems that were solved by the team.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://devopscon.io/kubernetes-ecosystem/uber-databases/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

45

WHITEPAPER Cloud-native Development

@ServerlessCon # ServerlessConserverless-architecture.io

cial version of the tool to do this. Bridge to Kubernetes
provides this in the open-source tool as well.

Local Kubernetes cluster
Normally, the Kubernetes clusters in the cloud, in the
upstream stages, are based on the specifications requi-
red for the production stage. This means that the cloud
clusters for the different stages are equipped with ac-
cess restrictions (RBAC, security constraints) and have
a network provider that controls the network accesses
within the cluster. Other restrictions have also been car-
ried over from the production stage.

"Just trying something out quickly" is difficult on
such systems. Local Kubernetes clusters started on the
developer's computer are far more suitable for this. The
developer has full access to this local Kubernetes and
can easily try out a few things. Understanding how the
Kubernetes cluster works behind the scenes is much ea-
sier now. Furthermore, skipping the CI/CD server for
deployment can make the developer roundtrip faster.
Provided you followed the advice from earlier in the ar-
ticle for the CI/CD part (use identical tools for CI/CD
if possible). This is not to say that development should
be limited to the local cluster, because the application
must eventually be able to run on the productive stage
in the cloud.

Local Kubernetes clusters are possible with Minikube
[20], DockerDesktop [21], or Kind [22], to name a few.
Meanwhile, there are quite a few more such clusters,
some with specialisation for specific purposes. Your
own Internet research will undoubtedly be beneficial in
this case.

Branch deployment
The connection of GitOps with the cloud and the new
CI/CD servers now allows for so-called branch deploy-
ment. Build pipelines can be used to deploy a perso-
nal Git branch in the cloud without colliding with the
actual deployment from the main branch. This allows
a developer to test his changes in the cloud without
interfering with other colleagues. The trick here is to
dynamically create a private Kubernetes namespace
that is only used for the selected Git branch. Individual
tests can be done here, and when they are completed,
the temporary artefacts should be cleaned up automa-
tically. When merging the private branch, the pipeline
should also remove the associated private Kubernetes
namespace.

In conclusion
This small overview of the Dev(Ops) Experience can
only demonstrate how broad the topic is. In compari-
son to previous developments, the complexity has sky-
rocketed, as have the demands on development teams.
Existing or newly-formed (DevOps) teams must manage
a multitude of new subtasks. The transition from traditi-
onal development to the cloud is often accompanied by
a steep learning curve for development teams.

The switch to cloud development cannot succeed wi-
thout the right tools. It is therefore not surprising that
there has been a veritable explosion of tools in this area
in recent years. From where we stand today, the trans-
formation is far from complete.

In many cases, the use of new tools is required, leaving
no stone unturned. Often, a completely new toolchain
is created that must work in tandem and even deal with
the replacement of individual components.

All of this adds up to a completely new Dev(Ops) ex-
perience for us, with new opportunities as well as new
challenges. Whatever the case may be. In any case, it's
still exciting.

Michael Hofmann is a freelance consultant, coach, spea-
ker, and author. He has extensive project experience in
software architecture, Java Enterprise, and DevOps in both
German and international environments.

Links & References

 [1] https://helm.sh

 [2] https://12factor.net

 [3] https://microprofile.io

 [4] https://www.graalvm.org

 [5] https://quarkus.io

 [6] https://landscape.cncf.io

 [7] https://www.sonarqube.org

 [8] https://github.com/fabric8io/docker-maven-plugin

 [9] https://github.com/GoogleContainerTools/jib/tree/master/
jib- maven-plugin

[10] https://github.com/palantir/gradle-docker

[11] https://github.com/bmuschko/gradle-docker-plugin

[12] https://github.com/GoogleContainerTools/jib/tree/master/
jib-gradle-plugin

[13] https://docs.docker.com/develop/develop-images/build_
enhancements/

[14] https://github.com/GoogleContainerTools/kaniko

[15] https://buildah.io

[16] https://skaffold.dev

[17] https://github.com/ksync/ksync

[18] https://www.telepresence.io

[19] https://docs.microsoft.com/en-us/visualstudio/bridge/
overview-bridge-to-kubernetes

[20] https://minikube.sigs.k8s.io/docs/start/

[21] https://www.docker.com/products/docker-desktop/

[22] https://kind.sigs.k8s.io

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://helm.sh
http://factor.net
https://microprofile.io
https://www.graalvm.org
https://quarkus.io
https://landscape.cncf.io
https://www.sonarqube.org
https://github.com/fabric8io/docker-maven-plugin
https://github.com/GoogleContainerTools/jib/tree/master/jib-
https://github.com/GoogleContainerTools/jib/tree/master/jib-
https://github.com/palantir/gradle-docker
https://github.com/bmuschko/gradle-docker-plugin
https://github.com/GoogleContainerTools/jib/tree/master/jib-gradle-plugin
https://github.com/GoogleContainerTools/jib/tree/master/jib-gradle-plugin
https://docs.docker.com/develop/develop-images/build_enhancements/
https://docs.docker.com/develop/develop-images/build_enhancements/
https://github.com/GoogleContainerTools/kaniko
https://buildah.io
https://skaffold.dev
https://github.com/ksync/ksync
https://www.telepresence.io
https://docs.microsoft.com/en-us/visualstudio/bridge/overview-bridge-to-kubernetes
https://docs.microsoft.com/en-us/visualstudio/bridge/overview-bridge-to-kubernetes
https://minikube.sigs.k8s.io/docs/start/
https://www.docker.com/products/docker-desktop/
https://kind.sigs.k8s.io

46

WHITEPAPER API Design

@ServerlessCon # ServerlessConserverless-architecture.io

by Lena Fuhrimann

HTTP works great as a means of communication for mi-
croservices because it is open, reliable, programming lan-
guage-agnostic, and works great over the wire. All these
features are crucial to modern services, as they allow engi-
neers to change the underlying technologies (e.g., change
the back-end code from Python to Go) without it affect-
ing the contract. Therefore, the API’s consumers don’t
even need to know about the implementing technology
and the providing team can take independent decisions
respectively.

Service contracts usually contain the following four
components:

• Available endpoints and operations on each endpoint
• Operation parameters input and output for each

operation
• Authentication methods
• Contact information, license, terms of use, and other

information

Specification and implementation
When working with services and their respective con-
tracts, one has to maintain both the specification and
the implementation. Ideally, these should always be in
sync, as the best documentation is useless if it does not
accurately reflect the reality of the API implementation.

Manual specification
The easiest way of creating a contract is to manually write
it, and then write the respective code that should imple-

ment the contract. This is quite tedious and error-prone,
as you have to basically write everything twice. When you
change your implementation, you have to think about
also changing the documentation and contract in the ex-
act same way and vice versa. A way better approach is to
either pick a technology that is contract-based and incor-
porates the interface specification in the exposed API or
to at least automate either the generation of the contract
from the implementation or the other way around.

Automated generation
There are two basic approaches to keeping the contract
and the implementation in sync in an automated way. The
first one is to write the code first and have the contract
generated from that (Implementation First). The second
approach is to write the contract and have the respective
implementation code generated from that (Contract First).

Using either the contract first or implementation first
approach guarantee that there is a single source of truth
and that the other part is always in sync. As such, both
are viable approaches. However, in general, it is pre-
ferred to write the contract first and generate implemen-
tation code from it. The reason being that when you
begin implementing your service, ideally, the contract
has already been defined and communicated with po-
tential consumers of your API to allow them to work
independently of your implementation. Having a hu-
man- and machine-readable contract checked into your
source code repository allows you to track changes to
that contract over time and additionally serves as docu-
mentation for what the implementation code does (or at
least what it should do).

Different ways of specifying contracts

API Contract
Definitions
When running one or multiple services, it is essential that they have reli-
able service contracts [1] defining their exposed APIs. Those contracts mostly
consist of declarative interface definitions, which strongly define and type the
API exposed by the respective service. As such, it is crucial that the code mak-
ing up the service exactly implements the interface and therefore fulfills its
side of the contract. Regressions need to be detected and changes reflected in
a well-communicated update to the contract. Here, we want to look at differ-
ent ways of specifying contracts for what is one of the most common protocols
for exposing service APIs: HTTP.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/

47

WHITEPAPER API Design

@ServerlessCon # ServerlessConserverless-architecture.io

Practical API Security Workshop:
Attack and Defense
Thomas Bayer (predic8)

In this hands-on workshop, you will get
to know vulnerabilities and how they can
be exploited to break into an application
through an API. A closer look at
OWASP’s API Security Top 10 will

provide you with details about some possible attacks
and their prevention. You will learn to protect APIs
against attacks using secure coding practices,
software architecture, and security infrastructure like
API gateways. This practice-oriented workshop is not
about compliance and papers. It’s about technology
and methodology with lots of demonstrations and
exercises.

Obviously, OpenAPI not being directly integrated
into the implementation frameworks has a great disad-
vantage: It does not enforce (e.g., at compile time) that
your implementation actually perfectly fulfills the speci-
fied contract. However, you can achieve a similar out-
come by adding a check for your code’s compliance to
your automation pipeline, which prevents releases that
diverge from their contract in an unwanted manner.

At this point, it is noteworthy, that REST applications
can include so-called HATEOAS links. These are URLs
included in the response body to a request, which lead to
further endpoints providing actions for an element. If a
client automatically follows those links, contracts can rely
on that and therefore drop some of the actual URLs and
paths from their specification. However, not too many ap-
plications in the wild reliably implement HATEOAS [3]
links, and they have their caveats and shortcomings.

GraphQL
GraphQL [4] calls itself “a query language for your
API.” The technology is about defining a schema which
strongly types your endpoint methods and the objects
they expect and return.

A simple GraphQL schema might look as follows:

Technologies
Here, we’ll look at three different technologies that al-
low you to write a clearly defined and declarative con-
tract for your services: OpenAPI, GraphQL, and gRPC.
These all have their advantages and disadvantages,
which will be laid out and discussed. Obviously, there
are many more technologies which allow declaring con-
tracts, but the ones presented here are three very popular
ones which are easy to use and have great communities
around them. They will be illustrated along the simple
example of an API where one can query Pokémon by
their ID.

OpenAPI
OpenAPI (formerly known as Swagger) is a very wide-
spread way of specifying REST and other HTTP APIs. It
is easy to write because the specification is just a JSON
or a YAML file which defines what your API looks like
by following a clearly defined specification.

An HTTP endpoint definition in OpenAPI might look
as follows:

OpenAPI [2] itself doesn’t come with any tools to gener-
ate the specification from your implementation or vice
versa. However, because it is such a popular format,
there are many tools that allow you to parse your imple-
mentation code (and possibly additional annotations)
and generate a valid OpenAPI specification from it. A
great example of such a tool is springdoc-openapi which
takes Java classes with their properties, methods, and
annotations and automatically generates an OpenAPI
specification from those. There are also tools to do it
the other way around. These take an existing OpenAPI
spec and generate boilerplate code from it for a compli-
ant implementation. A popular example of such a tool
is oapi-codegen which creates Go code from a valid
specification.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/
https://apiconference.net/api-development/practical-api-security-workshop-attack-and-defense/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23

48

WHITEPAPER API Design

@ServerlessCon # ServerlessConserverless-architecture.io

It is not only much more concise than the above
OpenAPI specification, but it also has great advantages
because it is part of the GraphQL specification. Almost
every GraphQL endpoint exposes its schema automati-
cally, which is a direct product of the endpoints it actually
exposes. This allows clients to query the contract directly
from the endpoint and therefore know that it is always
up to date. Tests can be run against that exposed schema,
which would detect breaking changes automatically and
potentially prevent releasing such. These conventions of
how the endpoint exposes its documentation allow us
to use comprehensive client frameworks such as apollo-
client.

With GraphQL, there are also frameworks that al-
low writing a schema first and generating the respective
boilerplate code from it. A popular tool for doing so
is gqlgen in Go.

gRPC
Another popular technology for declaring contracts
is gRPC [5]. It is based on Protocol Buffers [6], which
is a way of specifying how to serialize structured data.
The interface of a protocol buffer is defined in a file that
might look like this:

One big difference between protocol buffers and the
other technologies mentioned is that the data exchanged
is in binary format rather than plain text. This makes
them very performant but also harder to debug, which
makes having a clearly defined schema and API crucial.
A compiler of such a Protocol Buffer file is built into the
toolchain and lets you generate boilerplate code from
the specification and enforce compliance with the de-
fined contract.

Conclusion
There are many ways of writing contracts for your ser-
vice APIs. A good contract has the following character-
istics:

• It is human-readable
• It is machine-readable
• It is declarative and comprehensive
• It is tracked via version control
• It is programming language-agnostic
• It enforces that the implementation fulfills the con-

tract

• Breaking changes to the contract are detected and
properly communicated to potential consumers

This makes the above technologies excellent choices,
and all of them are a great step up from simply writing
your contract somewhere in a wiki.

Lena Fuhrimann is an energetic software engineer and ar-
chitect. She founded the company bespinian in 2019 with
Mathis Kretz and has since worked with many customers
and interesting technologies. Her primary areas of interest
include security, serverless technologies, public clouds, and

infrastructure as code. She has, however, worked extensively with
Kubernetes and its ecosystem, and has deployed numerous applica-
tions to those platforms using automation and GitOps. She uses Arch.

Links & References

[1] https://cloud.google.com/appengine/docs/legacy/standard/
java/designing-microservice-api

[2] https://www.openapis.org/

[3] https://en.wikipedia.org/wiki/HATEOAS

[4] https://graphql.org/

[5] https://grpc.io/

[6] https://github.com/protocolbuffers/protobuf

Accelerating Developer Experience
with API Design First
Travis Gosselin (SPS Commerce)

Modern HTTP APIs practically run the
contemporary tech world. The number of
APIs your organization is actively
building and maintaining is evidence of
that, and you need no convincing of the

value of API Design First principles. However,
introducing an API Design First process and method-
ologies can be fraught with too much manual effort,
slow progress, inconsistencies, and further chaos as
your organization scales. Much of this friction can be
alleviated by developing a mature API Design First
process within the organization supported with
first-class tooling and automation. In this talk, we will
dive into the principle areas of API Design First
across its lifecycle as we discuss how to accelerate
value in design, development, governance, documen-
tation, and change. Whether you already have
established API Design First methodologies or are
considering how to effectively adopt it, you will leave
with a practical understanding of effective processes
and governance. Experience how SPS Commerce
thinks about API Design First with a strong prefer-
ence towards governance through collaboration,
along with examples of key processes that simply
must be automated to succeed in an API-First world.

https://twitter.com/serverlesscon/?utm_source=pdf&utm_medium=referral&utm_campaign=slawhitepaper1.23
https://serverless-architecture.io/

	Contents
	Architectures for Cloud Solutions
	ECS Anywhere: Fast way to hybrid operations
	Kubernetes for
in-house operations
	Your First Step
Towards Serverless Application
Development
	4 Tips for Solving Lambda Performance Issues
	In the engine room
	AWS Proton –
Technical Details
	Dev(Ops) Experience Cloud-Native
	API Contract
Definitions

